Skip to main content

Advertisement

Log in

High PD-L1 expression indicates poor prognosis of HIV-infected patients with non-small cell lung cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Correction to this article was published on 06 August 2018

This article has been updated

Abstract

Background

The status of antitumor immunity represented by the expression of programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) and immune cell (IC) infiltration is unknown in HIV-infected patients with non-small cell lung cancer (NSCLC).

Methods

Fifteen HIV-infected patients with NSCLC were compared with 29 non-HIV-infected patients with NSCLC. Analysis of 13 propensity-score-matched patients in the two groups was also compared. The expression of PD-1/PD-L1 and tumor infiltration by CD4+, CD8+, and CD56+ immune cells were examined by immunohistochemistry; score of ≥ 2 was defined as positive.

Results

Although high PD-L1 expression in tumor cells was observed in HIV and non-HIV cohorts, the association of PD-1/PD-L1 was significant only in the HIV cohort. In overall as well as the propensity-matched analyses, HIV-infected patients with high PD-L1 expression showed shorter survival than HIV-infected patients with low PD-L1 expression; no significant difference was observed in this respect in the non-HIV cohort.

Conclusion

High PD-L1 expression in tumor tissue was associated with poor prognosis in HIV-infected NSCLC patients but not in non-HIV-infected NSCLC patients. These results suggest that antitumor immunity by PD-1/PD-L1 axis might be suppressed more in HIV-infected NSCLC patients as compared to their non-HIV-infected counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 06 August 2018

    The graphs are incorrectly identified in Fig. 3i, s and should be replaced with the following.

Abbreviations

CI:

Confidence interval

ECOG:

Eastern Cooperative Oncology Group

EGFR:

Epidermal growth factor receptor

FFPE:

Formalin-fixed paraffin-embedded

ICs:

Immune cells

IHC:

Immunohistochemistry

NADCs:

Non-AIDS defining cancers

NSCLC:

Non-small cell lung cancer

PS:

Performance status

TC:

Tumor cells

References

  1. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, McKenna MT, Centers for Disease C, Prevention (2008) Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged < 18 months and for HIV infection and AIDS among children aged 18 months to < 13 years—United States, 2008. MMWR Recomm Rep 57(RR-10):1–12

    Google Scholar 

  2. Engels EA, Brock MV, Chen J, Hooker CM, Gillison M, Moore RD (2006) Elevated incidence of lung cancer among HIV-infected individuals. J Clin Oncol 24(9):1383–1388

    Article  PubMed  Google Scholar 

  3. Wistuba II, Behrens C, Milchgrub S, Virmani AK, Jagirdar J, Thomas B, Ioachim HL, Litzky LA, Brambilla EM, Minna JD, Gazdar AF (1998) Comparison of molecular changes in lung cancers in HIV-positive and HIV-indeterminate subjects. JAMA 279(19):1554–1559

    Article  PubMed  CAS  Google Scholar 

  4. Lavole A, Chouaid C, Baudrin L, Wislez M, Raguin G, Pialoux G, Girard PM, Milleron B, Cadranel J (2009) Effect of highly active antiretroviral therapy on survival of HIV infected patients with non-small-cell lung cancer. Lung Cancer 65(3):345–350

    Article  PubMed  Google Scholar 

  5. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19(5):1021–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K- (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  PubMed  CAS  Google Scholar 

  9. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  PubMed  CAS  Google Scholar 

  10. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee JS, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR, Group OAKS. (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265

    Article  PubMed  Google Scholar 

  11. Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006) Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 203(10):2223–2227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A, Group PS (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846

    Article  PubMed  CAS  Google Scholar 

  13. Austin PC (2008) A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 27(12):2037–2049

    Article  PubMed  Google Scholar 

  14. Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55

    Article  Google Scholar 

  15. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276(11):889–897

    Article  PubMed  Google Scholar 

  16. Nguyen ML, Farrell KJ, Gunthel CJ (2010) Non-AIDS-defining malignancies in patients with HIV in the HAART era. Curr Infect Dis Rep 12(1):46–55

    Article  PubMed  Google Scholar 

  17. Hakimian R, Fang H, Thomas L, Edelman MJ (2007) Lung cancer in HIV-infected patients in the era of highly active antiretroviral therapy. J Thorac Oncol 2(4):268–272

    Article  PubMed  Google Scholar 

  18. Rengan R, Mitra N, Liao K, Armstrong K, Vachani A (2012) Effect of HIV on survival in patients with non-small-cell lung cancer in the era of highly active antiretroviral therapy: a population-based study. Lancet Oncol 13(12):1203–1209

    Article  PubMed  Google Scholar 

  19. Kaufmann DE, Walker BD (2009) PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J Immunol 182(10):5891–5897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, Hel Z (2014) Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog 10(3):e1003993

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spitsin S, Tustin NB, Riedel E, Tustin R 3rd, Murray JB, Peck LM, Khan M, Quinn J, Douglas SD (2012) Programmed death 1 receptor changes ex vivo in HIV-infected adults following initiation of highly active antiretroviral therapy. Clin Vaccine Immunol 19(5):752–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007 19(7):813–824

    Article  PubMed  CAS  Google Scholar 

  23. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y, Chen H (2014) Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther 7:567–573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig 94(1):107–116

    Article  PubMed  CAS  Google Scholar 

  27. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28(3):682–688

    Article  PubMed  CAS  Google Scholar 

  28. Trabattoni D, Saresella M, Biasin M, Boasso A, Piacentini L, Ferrante P, Dong H, Maserati R, Shearer GM, Chen L, Clerici M (2003) B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101(7):2514–2520

    Article  PubMed  CAS  Google Scholar 

  29. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12(10):1198–1202

    Article  PubMed  CAS  Google Scholar 

  30. Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, Andre P, Dieu-Nosjean MC, Alifano M, Regnard JF, Fridman WH, Sautes-Fridman C, Cremer I (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422

    Article  PubMed  CAS  Google Scholar 

  31. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354

    Article  PubMed  CAS  Google Scholar 

  32. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2004) Cross-talk between activated human NK cells and CD4+ T cells via OX40–OX40 ligand interactions. J Immunol 173(6):3716–3724

    Article  PubMed  CAS  Google Scholar 

  33. Frias M, Rivero-Juarez A, Gordon A, Camacho A, Cantisan S, Cuenca-Lopez F, Torre-Cisneros J, Pena J, Rivero A (2015) Persistence of pathological distribution of NK cells in HIV-infected patients with prolonged use of HAART and a sustained immune response. PLoS One 10(3):e0121019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Makoto Saito, the Senior Biostatistician in the Office for Clinical Research Support in Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, for advice on statistical analyses. They also thank Masumi Ogawa, the Technical Staff of Department of Pathology in Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, for pathological procedures. The authors would like to acknowledge Enago (http://www.enago.jp) for English language editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Okuma.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuma, Y., Hishima, T., Kashima, J. et al. High PD-L1 expression indicates poor prognosis of HIV-infected patients with non-small cell lung cancer. Cancer Immunol Immunother 67, 495–505 (2018). https://doi.org/10.1007/s00262-017-2103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2103-y

Keywords

Navigation