Skip to main content

Advertisement

Log in

Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

High-mobility group box 1 (HMGB1) is involved in the tumor-associated activation of regulatory T cells (Treg), but the mechanisms remain unknown. In a mouse tumor model, silencing HMGB1 in tumor cells or inhibiting tumor-derived HMGB1 not only dampened the capacity of tumor cells to produce thymic stromal lymphopoietin (TSLP), but also aborted the tumor-associated modulation of Treg-activating DC. Tumor-derived HMGB1 triggered the production of TSLP by tumor cells. Importantly, both tumor-derived HMGB1 and TSLP were necessary for modulating DC to activate Treg in a TSLP receptor (TSLPR)-dependent manner. In the therapeutic model, intratumorally inhibiting tumor-derived HMGB1 (causing downstream loss of TSLP production) attenuated Treg activation, unleashed tumor-specific CD8 T cell responses, and elicited CD8α+/CD103+DC- and T cell-dependent antitumor activity. These results suggest a new pathway for the activation of Treg involving in tumor-derived HMGB1 and TSLP, and have important implications for incorporating HMGB1 inhibitors into cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cells

Box A:

An antagonist for HMGB1

EP:

Ethyl pyruvate

GL:

Glycyrrhizin

HMGB1:

High-mobility group box 1

I.t.:

Intratumorally

KD:

Knockdown

KI:

Knockin

shRNA:

Short hairpin RNA

SPC:

Splenocytes

TDLN:

Tumor-draining lymph nodes

Th1 CD4+ :

T helper 1

Th2 CD4+ :

T helper 2

TME:

Tumor microenvironment

Treg Foxp3+ :

T regulatory cells

TSLP:

Thymic stromal lymphopoietin

TSLPR:

TSLP receptor

WB:

Western blot

WT:

Wild type

References

  1. Zou W (2006) Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

  2. Beyer M, Schultze JL (2009) Regulatory T cells: major players in the tumor microenvironment. Curr Pharm Des 15:1879–1892

    Article  CAS  PubMed  Google Scholar 

  3. Savage PA (2013) Basic principles of tumor-associated regulatory T cell biology. Trends Immunol 34:33–40

    Article  CAS  PubMed  Google Scholar 

  4. Takeuchi Y, Nishikawa H (2016) Roles of regulatory T cells in cancer immunity. Int Immunol 28:401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13:2836–2848

    Article  CAS  PubMed  Google Scholar 

  6. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  7. Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, Edwards MR, Michelsen KS, Kroeger KM, Liu C, Muhammad AK, Clark MC, Arditi M, Comin-Anduix B, Ribas A, Lowenstein PR, Castro MG (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6:e10

    Article  PubMed  Google Scholar 

  8. Guerriero JL, Ditsworth D, Catanzaro JM, Sabino G, Furie MB, Kew RR, Crawford HC, Zong WX (2011) DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J Immunol 186:3517–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gdynia G, Sauer SW, Kopitz J, Fuchs D, Duglova K, Ruppert T, Miller M, Pahl J, Cerwenka A, Enders M, Mairbäurl H, Kamiński MM, Penzel R, Zhang C, Fuller JC, Wade RC, Benner A, Chang-Claude J, Brenner H, Hoffmeister M, Zentgraf H, Schirmacher P, Roth W (2016) The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat Commun 7:10764. https://doi.org/10.1038/ncomms10764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signaling suppresses tumour growth and metastases. Nature 405:354–360

    Article  CAS  PubMed  Google Scholar 

  11. Liang X, Chavez AR, Schapiro NE, Loughran P, Thorne SH, Amoscato AA, Zeh HJ, Beer-Stolz D, Lotze MT, de Vera ME (2009) Ethyl pyruvate administration inhibits hepatic tumor growth. J Leukoc Biol 86:599–607

    Article  CAS  PubMed  Google Scholar 

  12. Campana L, Bosurgi L, Rovere-Querini P (2008) HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 20:518–523

    Article  CAS  PubMed  Google Scholar 

  13. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  CAS  PubMed  Google Scholar 

  14. Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, Yang H (2012) Cancer Cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 72:3290–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kusume A, Sasahira T, Luo Y, Isobe M, Nakagawa N, Tatsumoto N, Fujii K, Ohmori H, Kuniyasu H (2009) Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology 76:155–162

    Article  CAS  PubMed  Google Scholar 

  16. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res 74:5723–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Su Z, Ni P, She P, Liu Y, Richard SA, Xu W, Zhu H, Wang J (2016) Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunol Immunother 66:391–401. https://doi.org/10.1007/s00262-016-1942-2

    Article  PubMed  Google Scholar 

  19. Liu Z, Falo LD Jr, You Z (2011) Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity. J Immunol 187:118–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wild CA, Brandau S, Lotfi R, Mattheis S, Gu X, Lang S, Bergmann C (2012) HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol 48:409–416

    Article  CAS  PubMed  Google Scholar 

  21. Wild CA, Bergmann C, Fritz G, Schuler P, Hoffmann TK, Lotfi R, Westendorf A, Brandau S, Lang S (2012) HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. Int Immunol 24:485–494

    Article  CAS  PubMed  Google Scholar 

  22. Pedroza-Gonzalez A, Xu K, Wu TC, Aspord C, Tindle S, Marches F, Gallegos M, Burton EC, Savino D, Hori T, Tanaka Y, Zurawski S, Zurawski G, Bover L, Liu YJ, Banchereau J, Palucka AK (2011) Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J Exp Med 208:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olkhanud PB, Rochman Y, Bodogai M, Malchinkhuu E, Wejksza K, Xu M, Gress RE, Hesdorffer C, Leonard WJ, Biragyn A (2011) Thymic stromal lymphopoietin is a key mediator of breast cancer progression. J Immunol 186:5656–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP (2011) Intratumor T helper 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208:469–478

    Article  PubMed  PubMed Central  Google Scholar 

  25. Erdmann RB, Gartner JG, Leonard WJ, Ellison CA (2013) Lack of functional TSLP receptors mitigates Th2 polarization and the establishment and growth of 4T1 primary breast tumours but has different effects on tumour quantities in the lung and brain. Scand J Immunol 78:408–418

    Article  CAS  PubMed  Google Scholar 

  26. Lo Kuan E, Ziegler SF (2014) Thymic stromal lymphopoietin and cancer. J Immunol 193:4283–4288

    Article  CAS  PubMed  Google Scholar 

  27. Barooei R, Mahmoudian RA, Abbaszadegan MR, Mansouri A, Gholamin M (2015) Evaluation of thymic stromal lymphopoietin (TSLP) and its correlation with lymphatic metastasis in human gastric cancer. Med Oncol 32:217

    Article  PubMed  Google Scholar 

  28. De Jesus-Carrion S, Ziegler SF (2016) Control of tumor growth by TSLP during colorectal cancer. J Immunol 196:73.3 (Abstract from IMMUNOLOGY 2016™, May 13–17, 2016, Seattle, USA)

    Google Scholar 

  29. Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293. https://doi.org/10.1038/ni.1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Redhu NS, Gounni AS (2012) Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin Exp Allergy 42:994–1005

    Article  CAS  PubMed  Google Scholar 

  31. Wu TC, Xu K, Banchereau J, Palucka AK (2016) Cancer cell-derived transforming growth factor (TGF)-β and myeloid cell-derived interleukin (IL)-1β synergize to promote type 2 inflammation and breast cancer progression. J Immunol 196:73.8 (Abstract from IMMUNOLOGY 2016™, May 13–17, 2016, Seattle, USA)

    Article  Google Scholar 

  32. Zhang Y, Tian S, Liu Z, Zhang J, Zhang M, Bosenberg MW, Kedl RM, Waldmann TA, Storkus WJ, Falo LD Jr, You Z (2014) Dendritic cell-derived interleukin-15 is crucial for therapeutic cancer vaccine potency. OncoImmunology 3:e959321

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahl ME, Lewis DB, Gyarmati D, Aye T, Campbell DJ, Ziegler SF (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6:1047–1053

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Zhang J, Mi Z, Robbins P, Falo LD Jr (2005) Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 174:3808–3817

    Article  CAS  PubMed  Google Scholar 

  35. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M, Agresti A, Trisciuoglio L, Musco G, Bianchi ME (2007) Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14:431–441

    Article  CAS  PubMed  Google Scholar 

  37. Liu Z, Kim JH, Falo LD Jr, You Z (2009) Tumor regulatory T cells potently abrogate antitumor immunity. J Immunol 182:6160–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Musumeci D, Roviello GN, Montesarchio D (2014) An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 141:347–357

    Article  CAS  PubMed  Google Scholar 

  39. Yang H, Oceani M, Li J, Qiang X, Tanovic M, Harris HE, Susarla SM, Ulloa L, Wang H, DiRaima R, Czura CJ, Wang H, Roth J, Warren HS, Fink MP, Fenton M, Anderson U, Tracey KJ (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 101:296–301

    Article  CAS  PubMed  Google Scholar 

  40. Tang D, Kang R, Zeh HJ 3rd, Lotze MT (2010) High-mobility group box 1 and cancer. Biochim Biophys Acta 1799:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rojas A, Figueroa H, Morales E (2010) Fueling inflammation at tumor microenvironment: the role of multiligand/rage axis. Carcinogenesis 31:334–341

    Article  CAS  PubMed  Google Scholar 

  42. He Y, Zha J, Wang Y, Liu W, Yang X, Yu P (2013) Tissue damage-associated “danger signals” influence T-cell responses that promote the progression of preneoplasia to cancer. Cancer Res 73:629–639

    Article  CAS  PubMed  Google Scholar 

  43. Cottone L, Capobianco A, Gualteroni C, Monno A, Raccagni I, Valtorta S, Canu T, Di Tomaso T, Lombardo A, Esposito A, Moresco RM, Maschio AD, Naldini L, Rovere-Querini P, Bianchi ME, Manfredi AA (2016) Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncoimmunology 5:e1122860

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Müller S, Iannacone M, Traversari C, Bianchi ME, Manfredi AA (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang H, Wang H, Czura CJ, Tracey KJ (2005) The cytokine activity of HMGB1. J Leukoc Biol 78:1–8

    Article  CAS  PubMed  Google Scholar 

  46. Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P (2005) HMGB1: guiding immunity from within. Trends Immunol 26:381–387

    Article  CAS  PubMed  Google Scholar 

  47. Bianchi ME, Manfredi AA (2007) High mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220:35–46

    Article  CAS  PubMed  Google Scholar 

  48. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  CAS  PubMed  Google Scholar 

  49. Sha Y, Zmijewski J, Xu Z, Abraham E (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol 180:2531–2537

    Article  CAS  PubMed  Google Scholar 

  50. Kang R, Zhang Q, Zeh HJ 3rd, Lotze MT, Tang D (2013) HMGB1 in cancer: good, bad, or both. Clin Cancer Res 19:4046–4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsan MF (2011) Heat shock proteins and high mobility group box 1 protein lack cytokine function. J Leukoc Biol 89:847–853

    Article  CAS  PubMed  Google Scholar 

  52. Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Venereau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A, Thelen M, Varani L, Mellado M, Proudfoot A, Bianchi ME, Uguccioni M (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hreggvidsdóttir HS, Lundberg AM, Aveberger AC, Klevenvall L, Andersson U, Harris HE (2012) High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med 18:224–230

    Article  PubMed  Google Scholar 

  54. Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, Liu J, Antonelli A, Preti A, Raeli L, Shams SS, Yang H, Varani L, Andersson U, Tracey KJ, Bachi A, Uguccioni M, Bianchi ME (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Di Piazza M, Nowell CS, Koch U, Durham AD, Radtke F (2012) Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell 22:479–493

    Article  PubMed  Google Scholar 

  56. Demehri S, Turkoz A, Manivasagam S, Yockey LJ, Turkoz M, Kopan R (2012) Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell 22:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Demehri S, Cunningham TJ, Manivasagam S, Ngo KH, Moradi Tuchayi S, Reddy R, Meyers MA, DeNardo DG, Yokoyama WM (2016) Thymic stromal lymphopoietin blocks early stages of breast carcinogenesis. J Clin Invest 126:1458–1470

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lo Kuan E, Ziegler SF (2016) Thymic stromal lymphopoietinpromotes interplay between breast tumor cells, neutrophils and Ly6Chi monocytes to regulate breast tumor progression. J Immunol 196:72 (Abstract from IMMUNOLOGY 2016™, May 13–17, 2016, Seattle, USA)

    Article  Google Scholar 

  59. Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NF-κB. Proc Natl Acad Sci USA 104:914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, Akira S, Bierhaus A, Erlandsson-Harris H, Andersson U, Tracey KJ (2010) A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA 107:11942–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4 + CD25 + regulatory T cells in human thymus. Nature 436:1181–1185

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki F, Schmitt DA, Utsunomiya T, Pollard RB (1992) Stimulation of host resistance against tumors by glycyrrhizin, an active component of licorice roots. In Vivo 6:589–596

    CAS  PubMed  Google Scholar 

  63. Hsiang CY, Lai IL, Chao DC, Ho TY (2002) Differential regulation of activator protein 1 activity by glycyrrhizin. Life Sci 70:1643–1656

    Article  CAS  PubMed  Google Scholar 

  64. Kobayashi M, Fujita K, Katakura T, Utsunomiya T, Pollard RB, Suzuki F (2002) Inhibitory effect of glycyrrhizin on experimental pulmonary metastasis in mice inoculated with B16 melanoma. Anticancer Res 22:4053–4058

    CAS  PubMed  Google Scholar 

  65. Hibasami H, Iwase H, Yoshioka K, Takahashi H (2005) Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells. Int J Mol Med 16:233–236

    CAS  PubMed  Google Scholar 

  66. Rossi T, Benassi L, Magnoni C, Ruberto AI, Coppi A, Baggio G (2005) Effects of glycyrrhizin on UVB-irradiated melanoma cells. In Vivo 19:319–322

    CAS  PubMed  Google Scholar 

  67. Niwa K, Lian Z, Onogi K, Yun W, Tang L, Mori H, Tamaya T (2007) Preventive effects of glycyrrhizin on estrogen-related endometrial carcinogenesis in mice. Oncol Rep 17:617–622

    CAS  PubMed  Google Scholar 

  68. Thirugnanam S, Xu L, Ramaswamy K, Gnanasekar M (2008) Glycyrrhizin induces apoptosis in prostate cancer cell lines DU-145 and LNCaP. Oncol Rep 20:1387–1392

    CAS  PubMed  Google Scholar 

  69. Raphael TJ, Kuttan G (2008) Effect of naturally occurring triterpenoids ursolic acid and glycyrrhizic acid on the cell-mediated immune responses of metastatic tumor-bearing animals. Immunopharmacol Immunotoxicol 30:243–255

    Article  CAS  PubMed  Google Scholar 

  70. Sharma G, Kar S, Palit S, Das PK (2012) 18β-Glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J Cell Physiol 227:1923–1931

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Steven F. Ziegler (Benaroya Research Institute) for providing critical experimental materials which were prepared by Whitney Xu at the laboratory of Steven F. Ziegler, Dewayne Falkner at Flow Cytometry Core Facility (University of Pittsburgh) for assisting in flow cytometry and cell sorting, and Stephen C. Balmert at the laboratory of Louis D. Falo, Jr. for editing the manuscript. This work was supported by Department of Dermatology at The University of Pittsburgh School of Medicine and NIH Grants R21CA191522 (Zhaoyang You) and P50CA121973 (Louis D. Falo, Jr.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Z., Hao, X. et al. Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model. Cancer Immunol Immunother 67, 353–366 (2018). https://doi.org/10.1007/s00262-017-2087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2087-7

Keywords

Navigation