Skip to main content

Advertisement

Log in

Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Interleukin 6 (IL-6) was abundant in the tumor microenvironment and played potential roles in tumor progression. In our study, the expression of IL-6 in tumor tissues from 36 gastric cancer (GC) patients was significantly higher than in non-tumor tissues. Moreover, the number of CD163+CD206+ M2 macrophages that infiltrated in tumor tissues was significantly greater than those infiltrated in non-tumor tissues. The frequencies of M2 macrophages were positively correlated with the IL-6 expression in GC tumors. We also found that IL-6 could induce normal macrophages to differentiate into M2 macrophages with higher IL-10 and TGF-β expression, and lower IL-12 expression, via activating STAT3 phosphorylation. Accordingly, knocking down STAT3 using small interfering RNA decreased the expression of M2 macrophages-related cytokines (IL-10 and TGF-β). Furthermore, supernatants from IL-6-induced M2 macrophages promote GC cell proliferation and migration. Moreover, IL-6 production and CD163+CD206+ M2 macrophage infiltration in tumors were associated with disease progression and reduced GC patient survival. In conclusion, our data indicate that IL-6 induces M2 macrophage differentiation (IL-10highTGF-βhighIL-12 lowp35 ) by activating STAT3 phosphorylation, and the IL-6-induced M2 macrophages exert a pro-tumor function by promoting GC cell proliferation and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Bcl-xL:

B-cell lymphoma-extra large

CCK8:

Cell counting kit 8

CCL2:

Chemokine (C–C motif) ligand 2

GC:

Gastric cancer

M-CSF:

Macrophage colony-stimulating factor

PBMC:

Peripheral blood mononuclear cell

p-STAT3:

Phosphorylated STAT3

PVDF:

Polyvinylidene difluoride

SEM:

Standard error of mean

siRNA:

Small interfering RNA

SOCS3:

Suppressor of cytokine signaling 3

TAMs:

Tumor-associated macrophages

TBST:

Tris-buffered saline with Tween-20

VEGF:

Vascular endothelial growth factor

References

  1. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  3. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  CAS  PubMed  Google Scholar 

  4. Verreck FA, de Boer T, Langenberg DM et al (2004) Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 101:4560–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    Article  CAS  PubMed  Google Scholar 

  6. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  7. Satoh T, Takeuchi O, Vandenbon A et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11:936–944

    Article  CAS  PubMed  Google Scholar 

  8. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  9. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  10. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mauer J, Chaurasia B, Goldau J et al (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraakman MJ, Kammoun HL, Allen TL et al (2015) Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 21:403–416

    Article  CAS  PubMed  Google Scholar 

  13. Rohleder N, Aringer M, Boentert M (2012) Role of interleukin-6 in stress, sleep, and fatigue. Ann N Y Acad Sci 1261:88–96

    Article  CAS  PubMed  Google Scholar 

  14. Aoki Y, Feldman GM, Tosato G (2003) Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101:1535–1542

    Article  CAS  PubMed  Google Scholar 

  15. Azare J, Doane A, Leslie K et al (2011) Stat3 mediates expression of autotaxin in breast cancer. PLoS One 6:e27851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX, Fang JY (2008) Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leeman RJ, Lui VWY, Grandis JR (2006) STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 6:231–241

    Article  CAS  PubMed  Google Scholar 

  18. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spence S, Fitzsimons A, Boyd CR et al (2013) Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization. Immunity 38:66–78

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang Y, Peng LS, Zhao YL et al (2012) CD8(+) T cells that produce interleukin-17 regulate myeloid-derived suppressor cells and are associated with survival time of patients with gastric cancer. Gastroenterology 143:951–962

    Article  CAS  PubMed  Google Scholar 

  21. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16:448–457

    Article  CAS  PubMed  Google Scholar 

  22. Duluc D, Delneste Y, Tan F et al (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110:4319–4330

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani A, Allavena P, Sica A (2004) Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 40:1660–1667

    Article  CAS  PubMed  Google Scholar 

  24. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  CAS  PubMed  Google Scholar 

  25. Hutchins AP, Poulain S, Miranda-Saavedra D (2012) Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 119:E110–E119

    Article  CAS  PubMed  Google Scholar 

  26. Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu HY, Wang JS, Duan XY (2016) High tumor-associated macrophages infiltration is associated with poor prognosis and may contribute to the phenomenon of epithelial–mesenchymal transition in gastric cancer. Onco Targets Ther 9:3975–3983

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yuan FJ, Fu X, Shi HF, Chen GP, Dong P, Zhang WY (2014) Induction of murine macrophage M2 polarization by cigarette smoke extract via the JAK2/STAT3 Pathway. PLoS One 9:e107063

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hasita H, Komohara Y, Okabe H, Masuda T, Ohnishi K, Lei XF, Beppu T, Baba H, Takeya M (2010) Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci 101:1913–1919

    Article  CAS  PubMed  Google Scholar 

  29. Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M (2012) Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun 425:304–308

    Article  CAS  PubMed  Google Scholar 

  30. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  31. Necula LG, Chivu-Economescu M, Stanciulescu EL et al (2012) IL-6 and IL-11 as markers for tumor aggressiveness and prognosis in gastric adenocarcinoma patients without mutations in Gp130 subunits. J Gastrointest Liver Dis 21:23–29

    Google Scholar 

  32. Jinno T, Kawano S, Maruse Y et al (2015) Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep 33:2161–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao J, Zhao S, Halstensen TS (2016) Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep 35:3265–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin CN, Wang CJ, Chao YJ, Lai MD, Shan YS (2015) The significance of the co-existence of osteopontin and tumor-associated macrophages in gastric cancer progression. BMC Cancer 15:128

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sica A, Larghi P, Mancino A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355

    Article  CAS  PubMed  Google Scholar 

  36. Oghumu S, Varikuti S, Terrazas C, Kotov D, Nasser MW, Powell CA, Ganju RK, Satoskar AR (2014) CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology 143:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tiainen S, Tumelius R, Rilla K, Hamalainen K, Tammi M, Tammi R, Kosma V-M, Oikari S, Auvinen P (2015) High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66:873–883

    Article  PubMed  Google Scholar 

  38. Hu H, Hang J-J, Han T, Zhuo M, Jiao F, Wang L-W (2016) The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumor Biol 37:8657–8664

    Article  CAS  Google Scholar 

  39. Shen L, Li H, Shi Y, Wang D, Gong J, Xun J, Zhou S, Xiang R, Tan X (2016) M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma. Sci Rep 6:30347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J (2013) Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 12:259–267

    Article  CAS  PubMed  Google Scholar 

  41. Ryder M, Ghossein RA, Ricarte-Filho JCM, Knauf JA, Fagin JA (2008) Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer 15:1069–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niino D, Komohara Y, Kimura Y et al (2010) Ratio of M2 macrophage expression is closely associated with poor prognosis for Angioimmunoblastic T-cell lymphoma (AITL). Pathol Int 60:278–283

    Article  PubMed  Google Scholar 

  43. Wang ZG, Si XL, Xu A et al (2013) Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications. PLoS One 8:e75788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Department of Pathology, Department of Blood Transfusion, Southwest Hospital, Third Military Medical University, Chongqing, China, for their excellent technical assistance. This work was supported by the National Key Research and Development Program of China (2016YFC1302200) and the National Natural Science Foundation of China (NSFC, No. 81372560).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhuang or Yong-Liang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, XL., Duan, W., Su, CY. et al. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother 66, 1597–1608 (2017). https://doi.org/10.1007/s00262-017-2052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2052-5

Keywords

Navigation