Skip to main content

Advertisement

Log in

Therapeutic antibodies against cancer stem cells: a promising approach

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Monoclonal antibodies have been extensively used to treat malignancy along with routine chemotherapeutic drugs. Chemotherapy for metastatic cancer has not been successful in securing long-term remission of disease. This is in part due to the resistance of cancer cells to drugs. One aspect of the drug resistance is the inability of conventional drugs to eliminate cancer stem cells (CSCs) which often constitute less than 1–2% of the whole tumor. In some tumor types, it is possible to identify these cells using surface markers. Monoclonal antibodies targeting these CSCs are an attractive option for a new therapeutic approach. Although administering antibodies has not been effective, when combined with chemotherapy they have proved synergistic. This review highlights the potential of improving treatment efficacy using functional antibodies against CSCs, which could be combined with chemotherapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABCG2:

ATP-binding cassette sub-family G member 2

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AML:

Acute myeloid leukemia

CAR:

Chimeric antigen receptor

CRC:

Colorectal cancer

CSC:

Cancer stem cell

HNSCC:

Head and neck squamous cell carcinoma

HSC:

Hematopoietic stem cell

IgG:

Immunoglobulin G

ISC:

Intestinal stem cell

LSC:

Leukemia stem cell

NOD-SCID:

Non-obese diabetic/severe combined immunodeficiency

SIRPα:

Signal regulatory protein alpha

References

  1. Deonarain MP, Kousparou CA, Epenetos AA (2009) Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1:12–25 (review)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Naujokat C (2014) Monoclonal antibodies against human cancer stem cells. Immunotherapy 6:290–308. doi:10.2217/imt.14.4 (review)

    Article  CAS  PubMed  Google Scholar 

  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi:10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  6. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. doi:10.1038/nature05372

    Article  PubMed  CAS  Google Scholar 

  7. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037. doi:10.1158/0008-5472.CAN-06-2030

    Article  CAS  PubMed  Google Scholar 

  8. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio AC, Young RA, Weinberg RA (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74. doi:10.1016/j.cell.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PO (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768. doi:10.1002/ijc.23130

    Article  CAS  PubMed  Google Scholar 

  10. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337. doi:10.1158/0008-5472.CAN-05-1343

    Article  CAS  PubMed  Google Scholar 

  11. Gao Q, Geng L, Kvalheim G, Gaudernack G, Suo Z (2009) Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3. Ultrastruct Pathol 33:175–181. doi:10.1080/01913120903086072

    Article  PubMed  Google Scholar 

  12. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103:11154–11159. doi:10.1073/pnas.0603672103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu JF, Pan XH, Zhang SJ, Zhao C, Qiu BS, Gu HF, Hong JF, Cao L, Chen Y, Xia B, Bi Q, Wang YP (2015) CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models. Oncotarget 6:23662–23670. doi:10.18632/oncotarget.4282

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahmadi H, Baharvand H, Ashtiani SK, Soleimani M, Sadeghian H, Ardekani JM, Mehrjerdi NZ, Kouhkan A, Namiri M, Madani-Civi M, Fattahi F, Shahverdi A, Dizaji AV (2007) Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction. Curr Neurovasc Res 4:153–160

    Article  PubMed  Google Scholar 

  15. Smith PJ, Wiltshire M, Chappell SC, Cosentino L, Burns PA, Pors K, Errington RJ (2013) Kinetic analysis of intracellular Hoechst 33342–DNA interactions by flow cytometry: misinterpretation of side population status? Cytometry A 83:161–169. doi:10.1002/cyto.a.22224

    Article  PubMed  CAS  Google Scholar 

  16. Pors K, Moreb JS (2014) Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discov Today 19:1953–1963. doi:10.1016/j.drudis.2014.09.009 (review)

    Article  CAS  PubMed  Google Scholar 

  17. Nagare RP, Sneha S, Priya SK, Ganesan TS (2017) Cancer stem cells—are surface markers alone sufficient? Curr Stem Cell Res Ther 12:37–44 (review)

    Article  CAS  PubMed  Google Scholar 

  18. Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, Ganesan TS (2016) Tumour angiogenesis—origin of blood vessels. Int J Cancer 139:729–735. doi:10.1002/ijc.30067 (review)

    Article  CAS  PubMed  Google Scholar 

  19. Thiagarajan PS, Hitomi M, Hale JS, Alvarado AG, Otvos B, Sinyuk M, Stoltz K, Wiechert A, Mulkearns-Hubert E, Jarrar AM, Zheng Q, Thomas D, Egelhoff TT, Rich JN, Liu H, Lathia JD, Reizes O (2015) Development of a fluorescent reporter system to delineate cancer stem cells in triple-negative breast cancer. Stem Cells 33:2114–2125. doi:10.1002/stem.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye J, Wu D, Wu P, Chen Z, Huang J (2014) The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol 35:3945–3951. doi:10.1007/s13277-013-1561-x (review)

    Article  CAS  PubMed  Google Scholar 

  21. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J, Canty AJ, Danska JS, Bohlander SK, Buske C, Minden MD, Golub TR, Jurisica I, Ebert BL, Dick JE (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086–1093. doi:10.1038/nm.2415

    Article  CAS  PubMed  Google Scholar 

  22. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Munoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524. doi:10.1016/j.stem.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  23. Nadler LM, Stashenko P, Hardy R, Kaplan WD, Button LN, Kufe DW, Antman KH, Schlossman SF (1980) Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res 40:3147–3154

    CAS  PubMed  Google Scholar 

  24. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287. doi:10.1038/nrc3236 (review)

    Article  CAS  PubMed  Google Scholar 

  25. de Gast GC, van de Winkel JG, Bast BE (1997) Clinical perspectives of bispecific antibodies in cancer. Cancer Immunol Immunother 45:121–123 (review)

    Article  PubMed  Google Scholar 

  26. Tai MS, Mudgett-Hunter M, Levinson D, Wu GM, Haber E, Oppermann H, Huston JS (1990) A bifunctional fusion protein containing Fc-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry 29:8024–8030

    Article  CAS  PubMed  Google Scholar 

  27. Tanha J, Dubuc G, Hirama T, Narang SA, MacKenzie CR (2002) Selection by phage display of llama conventional V(H) fragments with heavy chain antibody V(H)H properties. J Immunol Methods 263:97–109

    Article  CAS  PubMed  Google Scholar 

  28. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078. doi:10.1038/nbt0905-1073

    Article  CAS  PubMed  Google Scholar 

  29. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525. doi:10.1038/321522a0

    Article  CAS  PubMed  Google Scholar 

  30. Luginbuhl B, Kanyo Z, Jones RM, Fletterick RJ, Prusiner SB, Cohen FE, Williamson RA, Burton DR, Pluckthun A (2006) Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J Mol Biol 363:75–97. doi:10.1016/j.jmb.2006.07.027

    Article  PubMed  CAS  Google Scholar 

  31. Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97. doi:10.1007/978-3-540-73259-4_4 (review)

    Article  CAS  Google Scholar 

  32. McNeil C (1998) Herceptin raises its sights beyond advanced breast cancer. J Natl Cancer Inst 90:882–883

    Article  CAS  PubMed  Google Scholar 

  33. Beuzeboc P, Scholl S, Garau XS, Vincent-Salomon A, Cremoux PD, Couturier J, Palangie T, Pouillart P (1999) Herceptin, a monoclonal humanized antibody anti-HER2: a major therapeutic progress in breast cancers overexpressing this oncogene? Bull Cancer 86:544–549 (review)

    CAS  PubMed  Google Scholar 

  34. Al-Zoobi L, Salti S, Colavecchio A, Jundi M, Nadiri A, Hassan GS, El-Gabalawy H, Mourad W (2014) Enhancement of Rituximab-induced cell death by the physical association of CD20 with CD40 molecules on the cell surface. Int Immunol 26:451–465. doi:10.1093/intimm/dxu046

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita M, Katakura Y, Shirahata S (2007) Recent advances in the generation of human monoclonal antibody. Cytotechnology 55:55–60. doi:10.1007/s10616-007-9072-5 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Logtenberg T (2007) Antibody cocktails: next-generation biopharmaceuticals with improved potency. Trends Biotechnol 25:390–394. doi:10.1016/j.tibtech.2007.07.005 (review)

    Article  CAS  PubMed  Google Scholar 

  37. Maccalli C, De Maria R (2015) Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunol Immunother 64:91–97. doi:10.1007/s00262-014-1592-1 (review)

    Article  PubMed  Google Scholar 

  38. Dunning NL, Laversin SA, Miles AK, Rees RC (2011) Immunotherapy of prostate cancer: should we be targeting stem cells and EMT? Cancer Immunol Immunother 60:1181–1193. doi:10.1007/s00262-011-1065-8 (review)

    Article  CAS  PubMed  Google Scholar 

  39. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174. doi:10.1038/nm1483

    Article  PubMed  CAS  Google Scholar 

  40. Charrad RS, Gadhoum Z, Qi J, Glachant A, Allouche M, Jasmin C, Chomienne C, Smadja-Joffe F (2002) Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 99:290–299

    Article  CAS  PubMed  Google Scholar 

  41. Gadhoum Z, Delaunay J, Maquarre E, Durand L, Lancereaux V, Qi J, Robert-Lezenes J, Chomienne C, Smadja-Joffe F (2004) The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. Leuk Lymphoma 45:1501–1510. doi:10.1080/1042819042000206687

    Article  CAS  PubMed  Google Scholar 

  42. Zhang LZ, Ding X, Li XY, Cen JN, Chen ZX (2010) In vitro effects of anti-CD44 monoclonal antibody on the adhesion and migration of chronic myeloid leukemia stem cells. Zhonghua Xue Ye Xue Za Zhi 31:398–402

    PubMed  Google Scholar 

  43. Zhang S, Wu CC, Fecteau JF, Cui B, Chen L, Zhang L, Wu R, Rassenti L, Lao F, Weigand S, Kipps TJ (2013) Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proc Natl Acad Sci USA 110:6127–6132. doi:10.1073/pnas.1221841110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marangoni E, Lecomte N, Durand L, de Pinieux G, Decaudin D, Chomienne C, Smadja-Joffe F, Poupon MF (2009) CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br J Cancer 100:918–922. doi:10.1038/sj.bjc.6604953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Molejon MI, Tellechea JI, Moutardier V, Gasmi M, Ouaissi M, Turrini O, Delpero JR, Dusetti N, Iovanna J (2015) Targeting CD44 as a novel therapeutic approach for treating pancreatic cancer recurrence. Oncoscience 2:572–575. doi:10.18632/oncoscience.172

    Article  PubMed  PubMed Central  Google Scholar 

  46. Masuko K, Okazaki S, Satoh M, Tanaka G, Ikeda T, Torii R, Ueda E, Nakano T, Danbayashi M, Tsuruoka T, Ohno Y, Yagi H, Yabe N, Yoshida H, Tahara T, Kataoka S, Oshino T, Shindo T, Niwa S, Ishimoto T, Baba H, Hashimoto Y, Saya H, Masuko T (2012) Anti-tumor effect against human cancer xenografts by a fully human monoclonal antibody to a variant 8-epitope of CD44R1 expressed on cancer stem cells. PLoS One 7:e29728. doi:10.1371/journal.pone.0029728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Du YR, Chen Y, Gao Y, Niu XL, Li YJ, Deng WM (2013) Effects and mechanisms of anti-CD44 monoclonal antibody A3D8 on proliferation and apoptosis of sphere-forming cells with stemness from human ovarian cancer. Int J Gynecol Cancer 23:1367–1375. doi:10.1097/IGC.0b013e3182a1d023

    Article  PubMed  Google Scholar 

  48. Perez A, Neskey DM, Wen J, Goodwin JW, Slingerland J, Pereira L, Weigand S, Franzmann EJ (2012) Abstract 2521: targeting CD44 in head and neck squamous cell carcinoma (HNSCC) with a new humanized antibody RO5429083. Can Res 72:2521. doi:10.1158/1538-7445.am2012-2521 (Abstract, 103rd Annual Meeting of the American Association for Cancer Research (AACR) 2012, Chicago, USA)

    Article  Google Scholar 

  49. Guo YJ, Ma J, Wong JH, Lin SC, Chang HC, Bigby M, Sy MS (1993) Monoclonal anti-CD44 antibody acts in synergy with anti-CD2 but inhibits anti-CD3 or T cell receptor-mediated signaling in murine T cell hybridomas. Cell Immunol 152:186–199. doi:10.1006/cimm.1993.1278

    Article  CAS  PubMed  Google Scholar 

  50. Heider KH, Kuthan H, Stehle G, Munzert G (2004) CD44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother 53:567–579. doi:10.1007/s00262-003-0494-4 (review)

    Article  CAS  PubMed  Google Scholar 

  51. Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S, Banerjee M, Mao Y, Kotarski J, Wicha MS, Liu R, Zou W (2012) Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 130:29–39. doi:10.1002/ijc.25967

    Article  CAS  PubMed  Google Scholar 

  52. Liu Q, Nguyen DH, Dong Q, Shitaku P, Chung K, Liu OY, Tso JL, Liu JY, Konkankit V, Cloughesy TF, Mischel PS, Lane TF, Liau LM, Nelson SF, Tso CL (2009) Molecular properties of CD133 + glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neurooncol 94:1–19. doi:10.1007/s11060-009-9919-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Horst D, Kriegl L, Engel J, Jung A, Kirchner T (2009) CD133 and nuclear beta-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 45:2034–2040. doi:10.1016/j.ejca.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  54. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323. doi:10.1016/j.stem.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Li F, Xue ZM, Wu HR (2010) Anti-human CD133 monoclonal antibody that could inhibit the proliferation of colorectal cancer cells. Hybridoma (Larchmt) 29:305–310. doi:10.1089/hyb.2010.0019

    Article  CAS  Google Scholar 

  56. Waldron NN, Barsky SH, Dougherty PR, Vallera DA (2014) A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 9:239–249. doi:10.1007/s11523-013-0290-9

    Article  PubMed  Google Scholar 

  57. Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, Li G, Jensen KC, Vogel H, Xu LW, Skirboll SS, Wong AJ (2014) Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant III. Cancer Res 74:1238–1249. doi:10.1158/0008-5472.CAN-13-1407

    Article  CAS  PubMed  Google Scholar 

  58. Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35:255–262 (review)

    Article  CAS  PubMed  Google Scholar 

  59. Sammar M, Aigner S, Hubbe M, Schirrmacher V, Schachner M, Vestweber D, Altevogt P (1994) Heat-stable antigen (CD24) as ligand for mouse P-selectin. Int Immunol 6:1027–1036

    Article  CAS  PubMed  Google Scholar 

  60. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29:2672–2680. doi:10.1038/onc.2010.35

    Article  CAS  PubMed  Google Scholar 

  61. Sagiv E, Starr A, Rozovski U, Khosravi R, Altevogt P, Wang T, Arber N (2008) Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 68:2803–2812. doi:10.1158/0008-5472.CAN-07-6463

    Article  CAS  PubMed  Google Scholar 

  62. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811. doi:10.1038/nrm1736 (review)

    Article  CAS  PubMed  Google Scholar 

  63. Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, Kodama K, Doi O, Miyake M (1995) Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res 55:6040–6044

    CAS  PubMed  Google Scholar 

  64. Huang CI, Kohno N, Ogawa E, Adachi M, Taki T, Miyake M (1998) Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol 153:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mori M, Mimori K, Shiraishi T, Haraguchi M, Ueo H, Barnard GF, Akiyoshi T (1998) Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res 4:1507–1510

    CAS  PubMed  Google Scholar 

  66. Sho M, Adachi M, Taki T, Hashida H, Konishi T, Huang CL, Ikeda N, Nakajima Y, Kanehiro H, Hisanaga M, Nakano H, Miyake M (1998) Transmembrane 4 superfamily as a prognostic factor in pancreatic cancer. Int J Cancer 79:509–516

    Article  CAS  PubMed  Google Scholar 

  67. Houle CD, Ding XY, Foley JF, Afshari CA, Barrett JC, Davis BJ (2002) Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian cancer progression. Gynecol Oncol 86:69–78

    Article  PubMed  Google Scholar 

  68. Hori H, Yano S, Koufuji K, Takeda J, Shirouzu K (2004) CD9 expression in gastric cancer and its significance. J Surg Res 117:208–215. doi:10.1016/j.jss.2004.01.014

    Article  CAS  PubMed  Google Scholar 

  69. Nakamoto T, Murayama Y, Oritani K, Boucheix C, Rubinstein E, Nishida M, Katsube F, Watabe K, Kiso S, Tsutsui S, Tamura S, Shinomura Y, Hayashi N (2009) A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J Gastroenterol 44:889–896. doi:10.1007/s00535-009-0081-3

    Article  CAS  PubMed  Google Scholar 

  70. Huang CL, Liu D, Masuya D, Kameyama K, Nakashima T, Yokomise H, Ueno M, Miyake M (2004) MRP-1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene 23:7475–7483. doi:10.1038/sj.onc.1208063

    Article  CAS  PubMed  Google Scholar 

  71. Menendez J, Jin L, Poeppl A, Sayegh D, Reilly K, Ceric N, Vyas T, Gupta A, Hahn S, Young D, Dick J, Pereira D (2014) Anti-CD9 antibody, AR40A746.2.3, inhibits tumor growth in pancreatic and breast cancer models and recognizes CD9 on CD34+ CD38− leukemic cancer stem cells. Cancer Res 68(9 Supplement):3993 (Abstract, Annual Meeting of the American Association for Cancer Research (AACR) 2008, San Diego, USA)

    Google Scholar 

  72. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136:1012–1024. doi:10.1053/j.gastro.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  73. Yamashita T, Budhu A, Forgues M, Wang XW (2007) Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res 67:10831–10839. doi:10.1158/0008-5472.CAN-07-0908

    Article  CAS  PubMed  Google Scholar 

  74. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768. doi:10.1038/nrc2499 (review)

    Article  CAS  PubMed  Google Scholar 

  75. Gires O, Klein CA, Baeuerle PA (2009) On the abundance of EpCAM on cancer stem cells. Nat Rev Cancer 9:143 author reply 143 (review)

    Article  CAS  PubMed  Google Scholar 

  76. Riethmuller G, Holz E, Schlimok G, Schmiegel W, Raab R, Hoffken K, Gruber R, Funke I, Pichlmaier H, Hirche H, Buggisch P, Witte J, Pichlmayr R (1998) Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 16(5):1788–1794. doi:10.1200/JCO.1998.16.5.1788

    Article  CAS  PubMed  Google Scholar 

  77. Ammons WS, Bauer RJ, Horwitz AH, Chen ZJ, Bautista E, Ruan HH, Abramova M, Scott KR, Dedrick RL (2003) In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia 5:146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Richter CE, Cocco E, Bellone S, Silasi DA, Ruttinger D, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2010) High-grade, chemotherapy-resistant ovarian carcinomas overexpress epithelial cell adhesion molecule (EpCAM) and are highly sensitive to immunotherapy with MT201, a fully human monoclonal anti-EpCAM antibody. Am J Obstet Gynecol 203:582.e1–582.e7. doi:10.1016/j.ajog.2010.07.041

    Article  CAS  Google Scholar 

  79. Naundorf S, Preithner S, Mayer P, Lippold S, Wolf A, Hanakam F, Fichtner I, Kufer P, Raum T, Riethmuller G, Baeuerle PA, Dreier T (2002) In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. Int J Cancer 100:101–110. doi:10.1002/ijc.10443

    Article  CAS  PubMed  Google Scholar 

  80. Bagley CJ, Woodcock JM, Stomski FC, Lopez AF (1997) The structural and functional basis of cytokine receptor activation: lessons from the common beta subunit of the granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 receptors. Blood 89:1471–1482 (review)

    CAS  PubMed  Google Scholar 

  81. Miyajima A, Mui AL, Ogorochi T, Sakamaki K (1993) Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 82:1960–1974 (review)

    CAS  PubMed  Google Scholar 

  82. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5:31–42. doi:10.1016/j.stem.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  83. Sun Q, Woodcock JM, Rapoport A, Stomski FC, Korpelainen EI, Bagley CJ, Goodall GJ, Smith WB, Gamble JR, Vadas MA, Lopez AF (1996) Monoclonal antibody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor alpha-chain and functions as a specific IL-3 receptor antagonist. Blood 87:83–92

    CAS  PubMed  Google Scholar 

  84. Nievergall E, Ramshaw HS, Yong AS, Biondo M, Busfield SJ, Vairo G, Lopez AF, Hughes TP, White DL, Hiwase DK (2014) Monoclonal antibody targeting of IL-3 receptor alpha with CSL362 effectively depletes CML progenitor and stem cells. Blood 123:1218–1228. doi:10.1182/blood-2012-12-475194

    Article  CAS  PubMed  Google Scholar 

  85. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R, Chiang JH, Hood L, Clarke MF, Weissman IL (2009) Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 106:3396–3401. doi:10.1073/pnas.0900089106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O, Matozaki T (2005) Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 174:2004–2011

    Article  CAS  PubMed  Google Scholar 

  87. Blazar BR, Lindberg FP, Ingulli E, Panoskaltsis-Mortari A, Oldenborg PA, Iizuka K, Yokoyama WM, Taylor PA (2001) CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J Exp Med 194:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barclay AN, Brown MH (2006) The SIRP family of receptors and immune regulation. Nat Rev Immunol 6:457–464. doi:10.1038/nri1859 (review)

    Article  CAS  PubMed  Google Scholar 

  89. Oldenborg PA, Gresham HD, Lindberg FP (2001) CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 193:855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP (2000) Role of CD47 as a marker of self on red blood cells. Science 288:2051–2054

    Article  CAS  PubMed  Google Scholar 

  91. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285. doi:10.1016/j.cell.2009.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, Park CY, Weissman IL, Majeti R (2011) Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 71:1374–1384. doi:10.1158/0008-5472.CAN-10-2238

    Article  CAS  PubMed  Google Scholar 

  93. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662–6667. doi:10.1073/pnas.1121623109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, van de Rijn M, Shortliffe L, Weissman IL (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106:14016–14021. doi:10.1073/pnas.0906549106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim D, Wang J, Willingham SB, Martin R, Wernig G, Weissman IL (2012) Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 26:2538–2545. doi:10.1038/leu.2012.141

    Article  CAS  PubMed  Google Scholar 

  96. Yoshida K, Tsujimoto H, Matsumura K, Kinoshita M, Takahata R, Matsumoto Y, Hiraki S, Ono S, Seki S, Yamamoto J, Hase K (2015) CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med 4:1322–1333. doi:10.1002/cam4.478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Edris B, Weiskopf K, Volkmer AK, Volkmer JP, Willingham SB, Contreras-Trujillo H, Liu J, Majeti R, West RB, Fletcher JA, Beck AH, Weissman IL, van de Rijn M (2012) Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc Natl Acad Sci USA 109:6656–6661. doi:10.1073/pnas.1121629109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M, Weissman IL (2013) Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci USA 110:11103–11108. doi:10.1073/pnas.1305569110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sapra P, Damelin M, Dijoseph J, Marquette K, Geles KG, Golas J, Dougher M, Narayanan B, Giannakou A, Khandke K, Dushin R, Ernstoff E, Lucas J, Leal M, Hu G, O’Donnell CJ, Tchistiakova L, Abraham RT, Gerber HP (2013) Long-term tumor regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol Cancer Ther 12:38–47. doi:10.1158/1535-7163.MCT-12-0603

    Article  CAS  PubMed  Google Scholar 

  100. Damelin M, Geles KG, Follettie MT, Yuan P, Baxter M, Golas J, DiJoseph JF, Karnoub M, Huang S, Diesl V, Behrens C, Choe SE, Rios C, Gruzas J, Sridharan L, Dougher M, Kunz A, Hamann PR, Evans D, Armellino D, Khandke K, Marquette K, Tchistiakova L, Boghaert ER, Abraham RT, Wistuba II, Zhou BB (2011) Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumor-initiating cells. Cancer Res 71:4236–4246. doi:10.1158/0008-5472.CAN-10-3919

    Article  CAS  PubMed  Google Scholar 

  101. Kerk S, Finkel K, Pearson AT, Warner K, Zhang Z, Nor F, Wagner VP, Vargas PA, Wicha MS, Hurt EM, Hollingsworth RE, Tice DA, Nor JE (2017) 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma. Clin Cancer Res 23:2516–2527. doi:10.1158/1078-0432.CCR-16-1834

    Article  CAS  PubMed  Google Scholar 

  102. Singh JK, Simoes BM, Howell SJ, Farnie G, Clarke RB (2013) Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res 15:210. doi:10.1186/bcr3436 (review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Singh JK, Farnie G, Bundred NJ, Simoes BM, Shergill A, Landberg G, Howell SJ, Clarke RB (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res 19:643–656. doi:10.1158/1078-0432.CCR-12-1063

    Article  CAS  PubMed  Google Scholar 

  104. Zou W, Wicha MS (2015) Chemokines and cellular plasticity of ovarian cancer stem cells. Oncoscience 2:615–616. doi:10.18632/oncoscience.181 (review)

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E, Vatan L, Szeliga W, Dou Y, Owens S, Zgodzinski W, Majewski M, Wallner G, Fang J, Huang E, Zou W (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772–784. doi:10.1016/j.immuni.2014.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910. doi:10.1016/j.ctrv.2012.04.007 (review)

    Article  CAS  PubMed  Google Scholar 

  107. Bharti R, Dey G, Mandal M (2016) Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett 375:51–61. doi:10.1016/j.canlet.2016.02.048 (review)

    Article  CAS  PubMed  Google Scholar 

  108. Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, Kotarski J, Tarkowski R, Wicha M, Cho K, Giordano T, Liu R, Zou W (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39:611–621. doi:10.1016/j.immuni.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  109. Wesolowski R, Markowitz J, Carson WE 3rd (2013) Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10. doi:10.1186/2051-1426-1-10 (review)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Walter RB, Appelbaum FR, Estey EH, Bernstein ID (2012) Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119:6198–6208. doi:10.1182/blood-2011-11-325050 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Diessner J, Bruttel V, Stein RG, Horn E, Hausler SF, Dietl J, Honig A, Wischhusen J (2014) Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis 5:e1149. doi:10.1038/cddis.2014.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bruttel VS, Wischhusen J (2014) Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 5:360. doi:10.3389/fimmu.2014.00360 (review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73:1635–1646. doi:10.1158/0008-5472.CAN-12-3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dai H, Wang Y, Lu X, Han W (2016) Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. doi:10.1093/jnci/djv439 (review)

    PubMed  PubMed Central  Google Scholar 

  115. Almåsbak H, Aarvak T, Vemuri MC (2016) CAR T cell therapy: a game changer in cancer treatment. J Immunol Res 2016:5474602. doi:10.1155/2016/5474602 (review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhang H, Ye ZL, Yuan ZG, Luo ZQ, Jin HJ, Qian QJ (2016) New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 12:718–729. doi:10.7150/ijbs.14405 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123:2625–2635. doi:10.1182/blood-2013-11-492231 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn A, Graham M, Levadoux-Martin M, Lee JB, Giacomelli AO, Hassell JA, Fischer-Russell D, Trus MR, Foley R, Leber B, Xenocostas A, Brown ED, Collins TJ, Bhatia M (2012) Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149:1284–1297. doi:10.1016/j.cell.2012.03.049

    Article  CAS  PubMed  Google Scholar 

  119. Salles G, Seymour JF, Offner F, Lopez-Guillermo A, Belada D, Xerri L, Feugier P, Bouabdallah R, Catalano JV, Brice P, Caballero D, Haioun C, Pedersen LM, Delmer A, Simpson D, Leppa S, Soubeyran P, Hagenbeek A, Casasnovas O, Intragumtornchai T, Ferme C, da Silva MG, Sebban C, Lister A, Estell JA, Milone G, Sonet A, Mendila M, Coiffier B, Tilly H (2011) Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet 377:42–51. doi:10.1016/S0140-6736(10)62175-7

    Article  CAS  PubMed  Google Scholar 

  120. Pivot X, Romieu G, Debled M, Pierga JY, Kerbrat P, Bachelot T, Lortholary A, Espié M, Fumoleau P, Serin D, Jacquin JP, Jouannaud C, Rios M, Abadie-Lacourtoisie S, Tubiana-Mathieu N, Cany L, Catala S, Khayat D, Pauporté I, Kramar A; PHARE trial investigators (2013) 6 months versus 12 months of adjuvant trastuzumab for patients with HER2-positive early breast cancer (PHARE): a randomised phase 3 trial. Lancet Oncol 14:741–748. doi:10.1016/S1470-2045(13)70225-0

    Article  CAS  PubMed  Google Scholar 

  121. Yip YL, Ward RL (2002) Anti-ErbB-2 monoclonal antibodies and ErbB-2-directed vaccines. Cancer Immunol Immunother 50:569–587. doi:10.1007/s002620100226 (review)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by University Grants Commission (UGC), Indian Council for Medical Research (ICMR). Department of Biotechnology (DBT), Govt. of India.

Smarakan Sneha is a University Grants Commission Senior Research Fellow (UGC-SRF) awardee. Syama Krishna Priya and Rohit Pravin Nagare are Indian Council for Medical Research Senior Research fellows (ICMR –SRF) and Chirukandath Sidhanth is supported by Department of Biotechnology (DBT).

Author information

Authors and Affiliations

Authors

Contributions

SS conceived, wrote and RPN, SKP, CS, KP edited the manuscript. TSG conceived, reviewed and edited all versions of the manuscript.

Corresponding author

Correspondence to Trivadi Sundaram Ganesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sneha, S., Nagare, R.P., Priya, S.K. et al. Therapeutic antibodies against cancer stem cells: a promising approach. Cancer Immunol Immunother 66, 1383–1398 (2017). https://doi.org/10.1007/s00262-017-2049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2049-0

Keywords

Navigation