Cancer Immunology, Immunotherapy

, Volume 66, Issue 12, pp 1529–1544 | Cite as

An unbiased in vivo functional genomics screening approach in mice identifies novel tumor cell-based regulators of immune rejection

  • Casey W. Shuptrine
  • Reham Ajina
  • Elana J. Fertig
  • Sandra A. Jablonski
  • H. Kim Lyerly
  • Zachary C. Hartman
  • Louis M. WeinerEmail author
Original Article


The clinical successes of immune checkpoint therapies for cancer make it important to identify mechanisms of resistance to anti-tumor immune responses. Numerous resistance mechanisms have been identified employing studies of single genes or pathways, thereby parsing the tumor microenvironment complexity into tractable pieces. However, this limits the potential for novel gene discovery to in vivo immune attack. To address this challenge, we developed an unbiased in vivo genome-wide RNAi screening platform that leverages host immune selection in strains of immune-competent and immunodeficient mice to select for tumor cell-based genes that regulate in vivo sensitivity to immune attack. Utilizing this approach in a syngeneic triple-negative breast cancer (TNBC) model, we identified 709 genes that selectively regulated adaptive anti-tumor immunity and focused on five genes (CD47, TGFβ1, Sgpl1, Tex9 and Pex14) with the greatest impact. We validated the mechanisms that underlie the immune-related effects of expression of these genes in different TNBC lines, as well as tandem synergistic interactions. Furthermore, we demonstrate the impact of different genes with previously unknown immune functions (Tex9 and Pex14) on anti-tumor immunity. Thus, this innovative approach has utility in identifying unknown tumor-specific regulators of immune recognition in multiple settings to reveal novel targets for future immunotherapies.


In Vivo Genome-wide RNAi Screen Triple-negative breast cancer Cancer-derived resistance to immunotherapy Functional genomics 



Bicinchoninic acid assay


Carcinoembryonic antigen related cell adhesion molecule 2




C-C motif chemokine ligand 4


Carbon dioxide


Clustered regularly interspaced short palindromic repeats


Ectonucleotide pyrophosphatase/phosphodiesterase 2


False discovery rate


Glyceraldehyde 3-phosphate dehydrogenase


Hydrogen chloride


Indoleamine-pyrrole 2,3 dioxygenase


Immunoglobulin G


Interleukin 4


Interleukin 13 receptor subunit alpha 1


Knocked down


Linear models for microarray data


Multiplicity of infection


NOD-SCID-IL2 gamma chain knock-out


Sodium chloride




Tumor necrosis factor (ligand) superfamily, member 4


Tumor protein P53


Peroxisomal membrane protein 14


RNA interference




System biosciences


Semaphorin 7a


Sphingosine-1-phosphate ligase 1


Short harpin RNA


SMAD family member 3


S1P transporter spinster homologue 2


Testis expressed gene 9


T-Cell lymphoma invasion and metastasis 1


Tumor microenvironment


Triple-negative breast cancer


Thrombospondin 1





This research was supported by the following Shared Resources at Lombardi Comprehensive Cancer Center: The Genomics and Epigenomics Shared Resource, the Flow Cytometry and Cell Sorting Shared Resource, and the Tissue Culture Shared Resource. All Lombardi Comprehensive Cancer Center Shared Resources are partially supported by National Institutes of Health (NIH)/National Cancer Institute (NCI) Grant P30-CA051008. An antibody to CD47 was kindly provided by Dr. Robert Karr, Tioma Therapeutics, Inc (St. Louis, MO).

Compliance with ethical standards

Funding sources

This manuscript was supported by NIH Grants CA50633 (Louis M Weiner) and CA51880 (Louis M Weiner), and Susan G. Komen Career Catalyst Research Grant CCR14299200 (Zachary C Hartman).

Conflict of interest

The authors have no conflicts of interest to report or disclose.

Supplementary material

262_2017_2047_MOESM1_ESM.pdf (7.4 mb)
Supplementary material 1 (PDF 7621 kb)


  1. 1.
    Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus Ipilimumab in advanced melanoma. N Engl J Med 369:122–133. doi: 10.1056/NEJMoa1302369 CrossRefPubMedGoogle Scholar
  2. 2.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi: 10.1056/NEJMoa1003466 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lynch TJ, Bondarenko I, Luft A et al (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30:2046–2054. doi: 10.1200/JCO.2011.38.4032 CrossRefPubMedGoogle Scholar
  4. 4.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi: 10.1056/NEJMoa1200690 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733. doi: 10.1056/NEJMoa1103849 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liedtke C, Mazouni C, Hess KR et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281. doi: 10.1200/JCO.2007.14.4147 CrossRefPubMedGoogle Scholar
  7. 7.
    Creelan BC (2014) Update on immune checkpoint inhibitors in lung cancer. Cancer Control 21:80–89CrossRefPubMedGoogle Scholar
  8. 8.
    Leto SM, Trusolino L (2014) Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: impact on future treatment strategies. J Mol Med 92:709–722. doi: 10.1007/s00109-014-1161-2 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Napolitano S, Martini G, Rinaldi B et al (2015) Primary and acquired resistance of colorectal cancer to anti-EGFR monoclonal antibody can be overcome by combined treatment of regorafenib with cetuximab. Clin Cancer Res 21(13):2975–2983. doi: 10.1158/1078-0432.CCR-15-0020 CrossRefPubMedGoogle Scholar
  10. 10.
    Zahreddine H, Borden KL (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4:28. doi: 10.3389/fphar.2013.00028 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. doi: 10.1038/ni1102-991 CrossRefPubMedGoogle Scholar
  12. 12.
    Driessens G, Kline J, Gajewski TF (2009) Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev 229:126–144. doi: 10.1111/j.1600-065X.2009.00771.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi: doi:10.1038/nrc3239 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shuptrine CW, Surana R, Weiner LM (2012) Monoclonal antibodies for the treatment of cancer. Sem Cancer Biol 22:3–13. doi: 10.1016/j.semcancer.2011.12.009 CrossRefGoogle Scholar
  15. 15.
    Surana R, Wang S, Xu W et al (2014) IL4 limits the efficacy of tumor-targeted antibody therapy in a murine model. Cancer Immunol Res 2:1103–1112. doi: 10.1158/2326-6066.CIR-14-0103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou P, Shaffer DR, Alvarez Arias DA et al (2014) In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506:52–57. doi: 10.1038/nature12988 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zender L, Xue W, Zuber J et al (2008) An oncogenomics-based In Vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864. doi: 10.1016/j.cell.2008.09.061 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen S, Sanjana NE, Zheng K et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–1260. doi: 10.1016/j.cell.2015.02.038 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wolf J, Müller-Decker K, Flechtenmacher C et al (2013) An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 33:4273–4278. doi: 10.1038/onc.2013.515 CrossRefPubMedGoogle Scholar
  20. 20.
    Andrysik Z, Kim J, Tan AC, Espinosa JM (2013) A genetic screen identifies TCF3/E2A and TRIAP1 as pathway-specific regulators of the cellular response to p53 activation. Cell Rep 3:1346–1354. doi: 10.1016/j.celrep.2013.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yeung ML, Houzet L, Yedavalli VSRK, Jeang KT (2009) A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 284:19463–19473. doi: 10.1074/jbc.M109.010033 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hattori H, Zhang X, Jia Y et al (2007) RNAi screen identifies UBE2D3 as a mediator of all-trans retinoic acid-induced cell growth arrest in human acute promyelocytic NB4 cells. Blood 110:640–650. doi: 10.1182/blood-2006-11-059048 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Berens EB, Sharif GM, Schmidt MO et al (2016) Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene 36:593–605. doi: 10.1038/onc.2016.234 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Seyhan AA, Varadarajan U, Choe S et al (2012) A genome-wide RNAi screen identifies novel targets of neratinib resistance leading to identification of potential drug resistant genetic markers. Mol BioSyst 8:1553. doi: 10.1039/c2mb05512k CrossRefPubMedGoogle Scholar
  25. 25.
    Berns K, Horlings HM, Hennessy BT et al (2007) A functional genetic approach identifies the PI3 K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402. doi: 10.1016/j.ccr.2007.08.030 CrossRefPubMedGoogle Scholar
  26. 26.
    Brummelkamp TR, Fabius AWM, Mullenders J et al (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2:202–206. doi: 10.1038/nchembio774 CrossRefPubMedGoogle Scholar
  27. 27.
    Smyth GK, Michaud J, Scott HS (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075. doi: 10.1093/bioinformatics/bti270 CrossRefPubMedGoogle Scholar
  28. 28.
    Du P, Zhang X, Huang C-C et al (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587. doi: 10.1186/1471-2105-11-587 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lin SM, Du P, Huber W, Kibbe WA (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36:e11. doi: 10.1093/nar/gkm1075 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Du P, Kibbe WA, Lin SM (2007) nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarrays. Biol Direct 2:16. doi: 10.1186/1745-6150-2-16 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Leek JT, Johnson WE, Parker HS et al (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. doi: 10.1093/bioinformatics/bts034 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio–the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157. doi: 10.1093/bioinformatics/btg290 CrossRefPubMedGoogle Scholar
  33. 33.
    Sugiura K, Stock CC (1952) Studies in a tumor spectrum. I. Comparison of the action of methylbis(2-chloroethyl)amine and 3-bis(2-chloroethyl)aminomethyl-4-methoxymethyl-5-hydroxy-6-methylpyridine on the growth of a variety of mouse and rat tumors. Cancer 5:382–402. doi: 10.1002/1097-0142(195203)5:2<382:AID-CNCR2820050229>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  34. 34.
    Sugiura K, Hitchings GH, Cavalieri LF, Stock CC (1950) The effect of 8-azaguanine on the growth of carcinoma, sarcoma, osteogenic sarcoma, lymphosarcoma and melanoma in animals. Cancer Res 10:178–185PubMedGoogle Scholar
  35. 35.
    Snell GD, Cloudman AM (2016) The effect of rate of freezing on the survival of fourteen transplantable tumors of mice. Cancer Res. Accessed 22 Jul 2016
  36. 36.
    Johnstone CN, Smith YE, Cao Y et al (2015) Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 8:237–251. doi: 10.1242/dmm.017830 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Purrington KS, Slager S, Eccles D et al (2014) Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 35:1012–1019. doi: 10.1093/carcin/bgt404 CrossRefPubMedGoogle Scholar
  38. 38.
    Willingham SB, Volkmer J-P, Gentles AJ et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662–6667. doi: 10.1073/pnas.1121623109 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu X, Pu Y, Cron K et al (2015) CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat Med 21:1209–1215. doi: 10.1038/nm.3931 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Massagué J (2008) TGFβ in Cancer. Cell 134:215–230. doi: 10.1016/j.cell.2008.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415. doi: 10.1038/nri2974 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Neuzillet C, Tijeras-Raballand A, Cohen R et al (2015) Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 147:22–31. doi: 10.1016/j.pharmthera.2014.11.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Murphy-Ullrich JE, Poczatek M (2000) Activation of latent TGF-β by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 11:59–69. doi: 10.1016/S1359-6101(99)00029-5 CrossRefPubMedGoogle Scholar
  44. 44.
    Shimada K, Nakajima A, Ikeda K et al (2011) CD47 regulates the TGF-β signaling pathway in osteoblasts and is distributed in Meckel’s cartilage. J Oral Sci 53:169–175. doi: 10.2334/josnusd.53.169 CrossRefPubMedGoogle Scholar
  45. 45.
    Rogers NM, Yao M, Novelli EM et al (2012) Activated CD47 regulates multiple vascular and stress responses: implications for acute kidney injury and its management. AJP Renal Physiol 303:F1117–F1125. doi: 10.1152/ajprenal.00359.2012 CrossRefGoogle Scholar
  46. 46.
    Daniel C, Wiede J, Krutzsch HC et al (2004) Thrombospondin-1 is a major activator of TGF-β in fibrotic renal disease in the rat in vivo. Kidney Int 65:459–468. doi: 10.1111/j.1523-1755.2004.00395.x CrossRefPubMedGoogle Scholar
  47. 47.
    Tseng D, Volkmer J-P, Willingham SB et al (2013) Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci USA 110(27):11103–11108. doi: 10.1073/pnas.1305569110 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kumar A, Saba JD (2009) Lyase to live by: sphingosine phosphate lyase as a therapeutic target. Expert Opin. Ther. Targets 13:1013–1025. doi: 10.1517/14728220903039722 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307. doi: 10.1016/j.tem.2007.07.005 CrossRefPubMedGoogle Scholar
  50. 50.
    Weyden LVD, Arends MJ, Campbell AD et al (2017) Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541:233–236. doi: 10.1038/nature20792 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhao J, Liu J, Lee J-F et al (2016) TGF-β/SMAD3 pathway stimulates sphingosine-1 phosphate receptor 3 expression. J Biol Chem 291:27343–27353. doi: 10.1074/jbc.M116.740084 CrossRefPubMedGoogle Scholar
  52. 52.
    Radeke HH, von Wenckstern H, Stoidtner K et al (2005) Overlapping signaling pathways of sphingosine 1-phosphate and TGF- in the Murine Langerhans Cell Line XS52. J Immunol 174:2778–2786. doi: 10.4049/jimmunol.174.5.2778 CrossRefPubMedGoogle Scholar
  53. 53.
    Xin C, Ren S, Kleuser B et al (2004) Sphingosine 1-phosphate cross-activates the smad signaling cascade and mimics transforming growth factor-β-induced cell responses. J Biol Chem 279:35255–35262. doi: 10.1074/jbc.M312091200 CrossRefPubMedGoogle Scholar
  54. 54.
    Miller AV, Alvarez SE, Spiegel S, Lebman DA (2008) Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor β-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 28:4142–4151. doi: 10.1128/MCB.01465-07 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    The MGC Project Team (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene collection (MGC). Genome Res 14:2121–2127. doi: 10.1101/gr.2596504 CrossRefGoogle Scholar
  56. 56.
    Dammai V, Subramani S (2001) The Human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196. doi: 10.1016/S0092-8674(01)00310-5 CrossRefPubMedGoogle Scholar
  57. 57.
    Albertini M, Rehling P, Erdmann R et al (1997) Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89:83–92. doi: 10.1016/S0092-8674(00)80185-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Casey W. Shuptrine
    • 1
    • 3
  • Reham Ajina
    • 1
  • Elana J. Fertig
    • 2
  • Sandra A. Jablonski
    • 1
  • H. Kim Lyerly
    • 3
  • Zachary C. Hartman
    • 3
  • Louis M. Weiner
    • 1
    Email author
  1. 1.Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashington DCUSA
  2. 2.Department of Oncology, Division of BiostatisticsSidney Kimmel Comprehensive Cancer Center, Johns Hopkins UniversityBaltimoreUSA
  3. 3.Department of SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations