Skip to main content

Advertisement

Log in

Evaluation of a xenogeneic vascular endothelial growth factor-2 vaccine in two preclinical metastatic tumor models in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In this study, a xenogeneic DNA vaccine encoding for human vascular endothelial growth factor receptor-2 (hVEGFR-2) was evaluated in two murine tumor models, the B16-F10 melanoma and the EO771 breast carcinoma model. The vaccine was administered by intradermal injection followed by electroporation. The immunogenicity and the biological efficacy of the vaccine were tested in (1) a prophylactic setting, (2) a therapeutic setting, and (3) a therapeutic setting combined with surgical removal of the primary tumor. The tumor growth, survival, and development of an immune response were followed. The cellular immune response was measured by a bioluminescence-based cytotoxicity assay with vascular endothelial growth factor-2 (VEGFR-2)-expressing target cells. Humoral immune responses were quantified by enzyme-linked immunosorbent assay (ELISA). Ex vivo bioluminescence imaging and immunohistological observation of organs were used to detect (micro)metastases. A cellular and humoral immune response was present in prophylactically and therapeutically vaccinated mice, in both tumor models. Nevertheless, survival in prophylactically vaccinated mice was only moderately increased, and no beneficial effect on survival in therapeutically vaccinated mice could be demonstrated. An influx of CD3+ cells and a slight decrease in VEGFR-2 were noticed in the tumors of vaccinated mice. Unexpectedly, the vaccine caused an increased quantity of early micrometastases in the liver. Lung metastases were not increased by the vaccine. These early liver micrometastases did however not grow into macroscopic metastases in either control or vaccinated mice when allowed to develop further after surgical removal of the primary tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTC:

Circulating tumor cells

eGFP:

Enhanced green fluorescent protein

hVEGFR-2:

Human vascular endothelial growth factor-2

IVIS:

In vivo imaging system

PBS:

Phosphate buffered saline

pDNA:

Plasmid DNA

VEGFR-2:

Vascular endothelial growth factor-2

References

  1. Swann JB, Smyth MJ (2007) Review series Immune surveillance of tumors. J Clin Invest 117:1137–1146. doi:10.1172/JCI31405.antigens

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy—revisited. Nat Rev Drug Discov 10:591–600. doi:10.1038/nrd3500

    Article  CAS  PubMed  Google Scholar 

  3. Wentink MQ, Huijbers EJ, de Gruijl TD, Verheul HM, Olsson AK, Griffioen AW (2015) Vaccination approach to anti-angiogenic treatment of cancer. Biochim Biophys Acta 1855:155–171. doi:10.1016/j.bbcan.2015.01.005

    CAS  PubMed  Google Scholar 

  4. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13:871–882. doi:10.1038/nrc3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421. doi:10.1016/j.ccr.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki H, Onishi H, Wada J, Yamasaki A, Tanaka H, Nakano K, Morisaki T, Katano M (2010) VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol 40:197–203. doi:10.1002/eji.200939887

    Article  CAS  PubMed  Google Scholar 

  7. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73:539–549. doi:10.1158/0008-5472.CAN-12-2325

    Article  CAS  PubMed  Google Scholar 

  8. Matejuk A, Leng Q, Chou ST, Mixson AJ (2011) Vaccines targeting the neovasculature of tumors. Vasc Cell 3:7. doi:10.1186/2045-824X-3-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morris LF, Ribas A (2007) Therapeutic cancer vaccines. Surg Oncol Clin N Am 16:819–831. doi:10.1016/j.soc.2007.07.007

    Article  PubMed  Google Scholar 

  10. Dong J, Yang J, Chen MQ, Wang XC, Wu ZP, Chen Y, Wang ZQ, Li M (2008) A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26. Cancer Biol Ther 7:502–509. doi:10.4161/cbt.7.4.5477

    Article  CAS  PubMed  Google Scholar 

  11. Xie K, Bai RZ, Wu Y, Liu Q, Liu K, Wei YQ (2009) Anti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models. Genet Vaccines Ther 7:10. doi:10.1186/1479-0556-7-10

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Wang Y, Wu Y, Ding ZY, Luo XM, Zhong WN, Liu J, Xia XY, Deng GH, Deng YT, Wei YQ, Jiang Y (2014) Mannan-modified adenovirus encoding VEGFR-2 as a vaccine to induce anti-tumor immunity. J Cancer Res Clin Oncol 140:701–712. doi:10.1007/s00432-014-1606-6

    Article  CAS  PubMed  Google Scholar 

  13. Jellbauer S, Panthel K, Hetrodt JH, Rüssmann H (2012) CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS One 7:e34214. doi:10.1371/journal.pone.0034214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu XL, Jiang XB, Liu RE, Zhang SM (2008) The enhanced anti-angiogenic and antitumor effects of combining flk1-based DNA vaccine and IP-10. Vaccine 26:5352–5357. doi:10.1016/j.vaccine.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, Eliceiri BP, Reisfeld RA (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8:1369–1375. doi:10.1038/nm794

    Article  CAS  PubMed  Google Scholar 

  16. Seavey MM, Maciag PC, Al-Rawi N, Sewell D, Paterson Y (2009) An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model. J Immunol 182:5537–5546. doi:10.4049/jimmunol.0803742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YS, Wang GQ, Wen YJ, Wang L, Chen XC, Chen P, Kan B, Li J, Huang C, Lu Y, Zhou Q, Xu N, Li D, Fan LY, Yi T, Wu HB, Wei YQ (2007) Immunity against tumor angiogenesis induced by a fusion vaccine with murine beta-defensin 2 and mFlk-1. Clin Cancer Res 13:6779–6787. doi:10.1158/1078-0432.CCR-07-1587

    Article  CAS  PubMed  Google Scholar 

  18. Zhou H, Luo Y, Mizutani M, Mizutani N, Reisfeld RA, Xiang R (2005) T cell-mediated suppression of angiogenesis results in tumor protective immunity. Blood 106:2026–2032. doi:10.1182/blood-2005-03-0969

    Article  CAS  PubMed  Google Scholar 

  19. Yan J, Jia R, Song H, Liu Y, Zhang L, Zhang W, Wang Y, Zhu Y, Yu J (2009) A promising new approach of VEGFR2-based DNA vaccine for tumor immunotherapy. Immunol Lett 126:60–66. doi:10.1016/j.imlet.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  20. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652. doi:10.1038/sj.gt.3301923

    Article  CAS  PubMed  Google Scholar 

  21. Xu L, Anchordoquy T (2011) Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 100:38–52. doi:10.1002/jps.22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baban CK, Cronin M, O’Hanlon D, O’Sullivan GC, Tangney M (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1:385–394. doi:10.4161/bbug.1.6.13146

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liang PH, Zhang KQ, Xu GL, Li YF, Wang LF, Nie ZL, Ye J, Wu G, Ge CG, Jin FS (2010) Construction of a DNA vaccine encoding Flk-1 extracellular domain and C3d fusion gene and investigation of its suppressing effect on tumor growth. CII 59:93–101. doi:10.1007/s00262-009-0727-2

    CAS  PubMed  Google Scholar 

  24. Xu GL, Zhang KQ, Guo B, Zhao TT, Yang F, Jiang M, Wang QH, Shang YH, Wu YZ (2010) Induction of protective and therapeutic antitumor immunity by a DNA vaccine with C3d as a molecular adjuvant. Vaccine 28:7221–7227. doi:10.1016/j.vaccine.2010.08.057

    Article  CAS  PubMed  Google Scholar 

  25. McKinney KA, Al-Rawi N, Maciag PC, Banyard DA, Sewell DA (2010) Effect of a novel DNA vaccine on angiogenesis and tumor growth in vivo. Arch Otolaryngol Head Neck Surg 136:859–864. doi:10.1001/archoto.2010.139

    Article  PubMed  Google Scholar 

  26. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369. doi:10.1038/sj.gt.3302337

    Article  CAS  PubMed  Google Scholar 

  27. Strioga MM, Darinskas A, Pasukoniene V, Mlynska A, Ostapenko V, Schijns V (2014) Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: to use or not to use? Vaccine 32:4015–4024. doi:10.1016/j.vaccine.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  28. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231. doi:10.1016/j.ccr.2009.01.027

    Article  PubMed  PubMed Central  Google Scholar 

  29. Plimack ER, Tannir N, Lin E, Bekele BN, Jonasch E (2009) Patterns of disease progression in metastatic renal cell carcinoma patients treated with antivascular agents and interferon: impact of therapy on recurrence patterns and outcome measures. Cancer 115:1859–1866. doi:10.1002/cncr.24211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, Schultz L, Mikkelsen T (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91:329–336. doi:10.1007/s11060-008-9718-y

    Article  CAS  PubMed  Google Scholar 

  31. Overwijk WW, Restifo NP (2001) B16 as a mouse model for human melanoma. Curr Protoc Immunol. doi:10.1002/0471142735.im2001s39 (Chapter 20: Unit 20.1)

    PubMed  PubMed Central  Google Scholar 

  32. Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RS, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL, Restall CM, Lucas E, Pearson HB, Deb S, Britt KL, Rizzitelli A, Li J, Harmey JH, Pouliot N, Anderson RL (2015) Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 8:237–251. doi:10.1242/dmm.017830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Denies S, Cicchelero L, Van Audenhove I, Sanders NN (2014) Combination of interleukin-12 gene therapy, metronomic cyclophosphamide and DNA cancer vaccination directs all arms of the immune system towards tumor eradication. J Control Release 187:175–182. doi:10.1016/j.jconrel.2014.05.045

    Article  CAS  PubMed  Google Scholar 

  34. Denies S, Cicchelero L, Polis I, Sanders NN (2016) Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs. Oncotarget 7(10):10905–10916. doi:10.18632/oncotarget.7265

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karimi MA, Lee E, Bachmann MH, Salicioni AM, Behrens EM, Kambayashi T, Baldwin CL (2014) Measuring cytotoxicity by bioluminescence imaging outperforms the standard chromium-51 release assay. PLoS One 9:e89357. doi:10.1371/journal.pone.0089357

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moserle L, Casanovas O (2013) Anti-angiogenesis and metastasis: a tumour and stromal cell alliance. J Intern Med 273:128–137. doi:10.1111/joim.12018

    Article  CAS  PubMed  Google Scholar 

  37. Otten GR, Doe B, Schaefer M, Chen M, Selby MJ, Goldbeck C, Hong M, Xu F, Ulmer JB (2000) Relative potency of cellular and humoral immune responses induced by DNA vaccination. Intervirology 43:227–232. doi:10.1159/000053990

    Article  CAS  PubMed  Google Scholar 

  38. Deck RR, DeWitt CM, Donnelly JJ, Liu MA, Ulmer JB (1997) Characterization of humoral immune responses induced by an influenza hemagglutinin DNA vaccine. Vaccine 15:71–78

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Valentin A, Kulkarni V, Rosati M, Beach RK, Alicea C, Hannaman D, Reed SG, Felber BK, Pavlakis GN (2013) HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques. Vaccine 31:3747–3755. doi:10.1016/j.vaccine.2013.04.037

    Article  CAS  PubMed  Google Scholar 

  40. Wentink MQ, Hackeng TM, Tabruyn SP, Puijk WC, Schwamborn K, Altschuh D, Meloen RH, Schuurman T, Griffioen AW, Timmerman P (2016) Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity. Proc Natl Acad Sci USA 113:12532–12537. doi:10.1073/pnas.1610258113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sullivan WJ, Christofk HR (2015) The metabolic milieu of metastases. Cell 160:363–364. doi:10.1016/j.cell.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  42. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935. doi:10.1158/1078-0432.CCR-10-1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uemura M, Yamamoto H, Takemasa I, Mimori K, Mizushima T, Ikeda M, Sekimoto M, Doki Y, Mori M (2011) Hypoxia-inducible adrenomedullin in colorectal cancer. Anticancer Res 31:507–514

    CAS  PubMed  Google Scholar 

  44. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239. doi:10.1016/j.ccr.2009.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Wang M-N, Li H, King KD, Bassi R, Sun H, Santiago A, Hooper AT, Bohlen P, Hicklin DJ (2002) Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 195:1575–1584. doi:10.1084/jem.20020072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu JY, Wei YQ, Yang L, Zhao X, Tian L, Hou JM, Niu T, Liu F, Jiang Y, Hu B, Wu Y, Su JM, Lou YY, He QM, Wen YJ, Yang JL, Kan B, Mao YQ, Luo F, Peng F (2003) Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 102:1815–1823. doi:10.1182/blood-2002-12-3772

    Article  CAS  PubMed  Google Scholar 

  47. Zuo SG, Chen Y, Wu ZP, Liu X, Liu C, Zhou YC, Wu CL, Jin CG, Gu YL, Li J, Chen XQ, Li Y, Wei HP, Li LH, Wang XC (2010) Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol Pharm Bull 33:174–182. doi:10.1248/bpb.33.174

    Article  CAS  PubMed  Google Scholar 

  48. Ewens A, Mihich E, Ehrke MJ (2005) Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res 25:3905–3915

    PubMed  Google Scholar 

  49. Winkelmann CT, Figueroa SD, Rold TL, Volkert WA, Hoffman TJ (2006) Microimaging characterization of a B16-F10 melanoma metastasis mouse model. Mol Imaging 5:105–114

    PubMed  Google Scholar 

  50. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292. doi:10.1016/j.cell.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of Ghent University and by grants from the Fonds Wetenschappelijk onderzoek (G.0235.11N and G.0621.10N). The technical assistance of Sarah Loomans was greatly appreciated (Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University).

Author information

Authors and Affiliations

Authors

Contributions

SD and NNS conceived and designed the experiments. SD performed the experiments and together with NNS drafted the initial submission. BL managed the revision of the paper and together with NNS drafted the revised manuscript. HH and JDT assisted with the immunizations and the follow-up of the mice during the revision. SMC produced the pDNA vaccine and inoculated the mice during the revision. LC was involved in the immunizations of the initial submission. FC and MS assisted with the histology and immunohistochemistry.

Corresponding author

Correspondence to Niek N. Sanders.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The experiments were approved by the ethical committee of the Faculty of Veterinary Medicine (Ghent University, Belgium; EC-DI 2014-45).

Informed consent

No patients were involved in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denies, S., Leyman, B., Huysmans, H. et al. Evaluation of a xenogeneic vascular endothelial growth factor-2 vaccine in two preclinical metastatic tumor models in mice. Cancer Immunol Immunother 66, 1545–1555 (2017). https://doi.org/10.1007/s00262-017-2046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2046-3

Keywords

Navigation