Cancer Immunology, Immunotherapy

, Volume 66, Issue 8, pp 1089–1101 | Cite as

Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases

  • Yaron Meirow
  • Michal BaniyashEmail author
Focussed Research Review


Chronic inflammation arising in a diverse range of non-cancerous and cancerous diseases, dysregulates immunity and exposes patients to a variety of complications. These include immunosuppression, tissue damage, cardiovascular diseases and more. In cancer, chronic inflammation and related immunosuppression can directly support tumor growth and dramatically reduce the efficacies of traditional treatments, as well as novel immune-based therapies, which require a functional immune system. Nowadays, none of the immune biomarkers, regularly used by clinicians can sense a developing chronic inflammation, thus complications can only be detected upon their appearance. This review focuses on the necessity for such immune status biomarkers, which could predict complications prior to their appearance. Herein we bring examples for the use of cellular and molecular biomarkers in diagnosis, prognosis and follow-up of patients suffering from various cancers, for prediction of response to immune-based anti-cancer therapy and for prediction of cardiovascular disease in type 2 diabetes patients. Monitoring such biomarkers is expected to have a major clinical impact in addition to unraveling of the entangled complexity underlying dysregulated immunity in chronic inflammation. Thus, newly discovered biomarkers and those that are under investigation are projected to open a new era towards combating the silent damage induced by chronic inflammation.


Immune biomarkers Chronic inflammation Immunosuppression Cancer Type 2 diabetes MDSC 





Glycated hemoglobin


Bone marrow


Chimeric antigen receptor T cell


Colorectal cancer


Cytotoxic T lymphocyte associated protein 4


Cardiovascular disease


Dendritic cell


High mobility group box 1 protein


High sensitivity C-reactive protein


Inflammatory bowel disease


Interferon gamma


Immunoreceptor tyrosine-based activation motif


Lactate dehydrogenase


Myeloid derived suppressor cells


Mean fluorescence intensity


Monocytic MDSC


Nitric oxide


Programmed death receptor 1


Programmed death receptor ligand 1


Poly-morpho-nuclear MDSC


Receptor for advanced glycation end products


Reactive oxygen species


Soluble intracellular adhesion molecule 1


Sorting nexin 9


Type 2 diabetes mellitus


T-cell receptor


Transforming growth factor beta


Tumor infiltrating lymphocyte


Tumor necrosis factor alpha


Regulatory T-cell


Vascular-endothelial growth factor



The authors acknowledge Kerem Ben-Meir, Leonor Daniel and Ivan Mikula, who helped in the production of this review. The authors gratefully acknowledge the support of the Society of Research Associates of the Lautenberg Center and the Harold B. Abramson Chair in Immunology. They also thank the Grant support by the Israel Science Foundation (ISF), Joint Program between the Israel Science Foundation (ISF) and the National Natural Science Foundation of China (NSFC) the Israeli Ministry of Health, the Joint German-Israeli Research Program (DKFZ), the Israel Cancer Research Fund (ICRF), Israeli Ministry of Economy Chief Scientist’s program for Industrial Application of Academic Research (NOFAR), and the Joseph and Matilda Melnick Funds.

Compliance with ethical standards

Conflict of interest

No conflicts of interest were disclosed.


  1. 1.
    Meirow Y, Kanterman J, Baniyash M (2015) Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate. Front Immunol 6:523. doi: 10.3389/fimmu.2015.00523 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Abrahamian H, Endler G, Exner M, Mauler H, Raith M, Endler L, Rumpold H, Gerdov M, Mannhalter C, Prager R, Irsigler K, Wagner OF (2007) Association of low-grade inflammation with nephropathy in type 2 diabetic patients: role of elevated CRP-levels and 2 different gene-polymorphisms of proinflammatory cytokines. Exp Clin Endocrinol Diabetes 115(1):38–41. doi: 10.1055/s-2007-948213 PubMedCrossRefGoogle Scholar
  3. 3.
    Xie F, Luo N, Lee HP (2008) Cost effectiveness analysis of population-based serology screening and (13)C-Urea breath test for Helicobacter pylori to prevent gastric cancer: a Markov model. World J Gastroenterol 14(19):3021–3027. doi: 10.3748/wjg.14.3021 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    De Flora S, Bonanni P (2011) The prevention of infection-associated cancers. Carcinogenesis 32(6):787–795. doi: 10.1093/carcin/bgr054 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wroblewski LE, Peek RM Jr, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23(4):713–739. doi: 10.1128/CMR.00011-10 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Garcia C, Feve B, Ferre P, Halimi S, Baizri H, Bordier L, Guiu G, Dupuy O, Bauduceau B, Mayaudon H (2010) Diabetes and inflammation: fundamental aspects and clinical implications. Diabetes Metab 36(5):327–338. doi: 10.1016/j.diabet.2010.07.001 PubMedCrossRefGoogle Scholar
  7. 7.
    Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. doi: 10.1038/ncomms12150 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z, Liu Y, Li D, Yuan Y, Zhang GM, Feng ZH (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252(1):86–92. doi: 10.1016/j.canlet.2006.12.012 PubMedCrossRefGoogle Scholar
  9. 9.
    Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J, Umansky V (2015) Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer 136(10):2352–2360. doi: 10.1002/ijc.29297 PubMedCrossRefGoogle Scholar
  10. 10.
    Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P (2012) PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest 41(6–7):635–657. doi: 10.3109/08820139.2012.695417 PubMedCrossRefGoogle Scholar
  11. 11.
    Ban Y, Mai J, Li X, Mitchell-Flack M, Zhang T, Zhang L, Chouchane L, Ferrari M, Shen H, Ma X (2017) Targeting autocrine CCL5-CCR5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res 77(11):2857–2868. doi: 10.1158/0008-5472.CAN-16-2913 PubMedCrossRefGoogle Scholar
  12. 12.
    Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38(3):541–554. doi: 10.1016/j.immuni.2013.02.007 PubMedCrossRefGoogle Scholar
  13. 13.
    Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, Wang XY, Yi H, Yang YG (2016) Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 8(331):331ra40. doi: 10.1126/scitranslmed.aae0482 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Guo C, Hu F, Yi H, Feng Z, Li C, Shi L, Li Y, Liu H, Yu X, Wang H, Li J, Li Z, Wang XY (2016) Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis 75(1):278–285. doi: 10.1136/annrheumdis-2014-205508 PubMedCrossRefGoogle Scholar
  15. 15.
    Xi Q, Li Y, Dai J, Chen W (2015) High frequency of mononuclear myeloid-derived suppressor cells is associated with exacerbation of inflammatory bowel disease. Immunol Invest 44(3):279–287. doi: 10.3109/08820139.2014.999937 PubMedCrossRefGoogle Scholar
  16. 16.
    Qin A, Cai W, Pan T, Wu K, Yang Q, Wang N, Liu Y, Yan D, Hu F, Guo P, Chen X, Chen L, Zhang H, Tang X, Zhou J (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87(3):1477–1490. doi: 10.1128/JVI.01759-12 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi: 10.1038/nri2506 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184(6):3106–3116. doi: 10.4049/jimmunol.0902661 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, Lasry A, Goldshtein A, Hubert A, Baniyash M (2014) Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res 74(21):6022–6035. doi: 10.1158/0008-5472.CAN-14-0657 PubMedCrossRefGoogle Scholar
  20. 20.
    Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, Schadendorf D, Utikal J, Umansky V (2015) Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res 21(24):5453–5459. doi: 10.1158/1078-0432.CCR-15-0676 PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider T, Sevko A, Heussel CP, Umansky L, Beckhove P, Dienemann H, Safi S, Utikal J, Hoffmann H, Umansky V (2015) Serum inflammatory factors and circulating immunosuppressive cells are predictive markers for efficacy of radiofrequency ablation in non-small-cell lung cancer. Clin Exp Immunol 180(3):467–474. doi: 10.1111/cei.12596 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Limagne E, Euvrard R, Thibaudin M, Rebe C, Derangere V, Chevriaux A, Boidot R, Vegran F, Bonnefoy N, Vincent J, Bengrine-Lefevre L, Ladoire S, Delmas D, Apetoh L, Ghiringhelli F (2016) Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-bevacizumab drug treatment Regimen. Cancer Res 76(18):5241–5252. doi: 10.1158/0008-5472.CAN-15-3164 PubMedCrossRefGoogle Scholar
  23. 23.
    OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W, Pan ZZ, Zheng LM, Zhang XS, Wang Z, Li Q, Ma G, Li J (2015) Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med 13:47. doi: 10.1186/s12967-015-0410-7 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32(14):1743–1751. doi: 10.1038/onc.2012.269 PubMedCrossRefGoogle Scholar
  25. 25.
    Huang Q, Shen HM, Shui G, Wenk MR, Ong CN (2006) Emodin inhibits tumor cell adhesion through disruption of the membrane lipid Raft-associated integrin signaling pathway. Cancer Res 66(11):5807–5815. doi: 10.1158/0008-5472.CAN-06-0077 PubMedCrossRefGoogle Scholar
  26. 26.
    Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449. doi: 10.1158/0008-5472.CAN-07-6621 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    de Leeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3 + tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18(11):3022–3029. doi: 10.1158/1078-0432.CCR-11-3216 CrossRefGoogle Scholar
  28. 28.
    Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S (2016) Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22(6):679–684. doi: 10.1038/nm.4086 PubMedCrossRefGoogle Scholar
  29. 29.
    Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L, Baniyash M (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177(7):4763–4772. doi: 10.4049/jimmunol.177.7.4763 PubMedCrossRefGoogle Scholar
  30. 30.
    Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, Pines M, Pikarsky E, Baniyash M (2008) A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 111(3):1437–1447. doi: 10.1182/blood-2007-07-100404 PubMedCrossRefGoogle Scholar
  31. 31.
    Bronstein-Sitton N, Cohen-Daniel L, Vaknin I, Ezernitchi AV, Leshem B, Halabi A, Houri-Hadad Y, Greenbaum E, Zakay-Rones Z, Shapira L, Baniyash M (2003) Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat Immunol 4(10):957–964. doi: 10.1038/ni975 PubMedCrossRefGoogle Scholar
  32. 32.
    Ish-Shalom E, Meirow Y, Sade-Feldman M, Kanterman J, Wang L, Mizrahi O, Klieger Y, Baniyash M (2016) Impaired SNX9 expression in immune cells during chronic Inflammation: prognostic and Diagnostic Implications. J Immunol 196(1):156–167. doi: 10.4049/jimmunol.1402877 PubMedCrossRefGoogle Scholar
  33. 33.
    Sade-Feldman M, Kanterman J, Klieger Y, Ish-Shalom E, Olga M, Saragovi A, Shtainberg H, Lotem M, Baniyash M (2016) Clinical significance of circulating CD33+ CD11b+ HLA-DR-myeloid cells in patients with stage IV melanoma treated with ipilimumab. Clin Cancer Res 22(23):5661–5672. doi: 10.1158/1078-0432.CCR-15-3104 PubMedCrossRefGoogle Scholar
  34. 34.
    Boniface JD, Poschke I, Mao Y, Kiessling R (2012) Tumor-dependent down-regulation of the zeta-chain in T-cells is detectable in early breast cancer and correlates with immune cell function. Int J Cancer 131(1):129–139. doi: 10.1002/ijc.26355 PubMedCrossRefGoogle Scholar
  35. 35.
    Scrimini S, Pons J, Agusti A, Clemente A, Sallan MC, Bauca JM, Soriano JB, Cosio BG, Lopez M, Crespi C, Sauleda J (2015) Expansion of myeloid-derived suppressor cells in chronic obstructive pulmonary disease and lung cancer: potential link between inflammation and cancer. Cancer Immunol Immunother 64(10):1261–1270. doi: 10.1007/s00262-015-1737-x PubMedCrossRefGoogle Scholar
  36. 36.
    Zeng QL, Yang B, Sun HQ, Feng GH, Jin L, Zou ZS, Zhang Z, Zhang JY, Wang FS (2014) Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR zeta chain expression on CD8(+) T cells in chronic hepatitis C patients. Mol Cells 37(1):66–73. doi: 10.14348/molcells.2014.2282 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Tumino N, Turchi F, Meschi S, Lalle E, Bordoni V, Casetti R, Agrati C, Cimini E, Montesano C, Colizzi V, Martini F, Sacchi A (2015) In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3zeta expression through ELF-1 inhibition. AIDS 29(18):2397–2407. doi: 10.1097/QAD.0000000000000871 PubMedCrossRefGoogle Scholar
  38. 38.
    Eldor R, Klieger Y, Sade-Feldman M, Vaknin I, Varfolomeev I, Fuchs C, Baniyash M (2015) CD247, a novel T cell-derived diagnostic and prognostic biomarker for detecting disease progression and severity in patients with type 2 diabetes. Diabetes Care 38(1):113–118. doi: 10.2337/dc14-1544 PubMedCrossRefGoogle Scholar
  39. 39.
    Schaefer TM, Bell I, Pfeifer ME, Ghosh M, Trible RP, Fuller CL, Ashman C, Reinhart TA (2002) The conserved process of TCR/CD3 complex down-modulation by SIV Nef is mediated by the central core, not endocytic motifs. Virology 302(1):106–122. doi: 10.1006/viro.2002.1628 PubMedCrossRefGoogle Scholar
  40. 40.
    Lundmark R, Carlsson SR (2009) SNX9—a prelude to vesicle release. J Cell Sci 122(Pt 1):5–11. doi: 10.1242/jcs.037135 PubMedCrossRefGoogle Scholar
  41. 41.
    Bendris N, Schmid SL (2017) Endocytosis, metastasis and beyond: multiple facets of SNX9. Trends Cell Biol 27(3):189–200. doi: 10.1016/j.tcb.2016.11.001 PubMedCrossRefGoogle Scholar
  42. 42.
    Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, Jernstrom H, Janols H, Wullt M, Bredberg A, Ryden L, Leandersson K (2015) Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients. PLoS ONE 10(5):e0127028. doi: 10.1371/journal.pone.0127028 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wang Z, Zhang L, Wang H, Xiong S, Li Y, Tao Q, Xiao W, Qin H, Wang Y, Zhai Z (2015) Tumor-induced CD14 + HLA-DR (-/low) myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother 64(3):389–399. doi: 10.1007/s00262-014-1646-4 PubMedCrossRefGoogle Scholar
  44. 44.
    Markowitz J, Brooks TR, Duggan MC, Paul BK, Pan X, Wei L, Abrams Z, Luedke E, Lesinski GB, Mundy-Bosse B, Bekaii-Saab T, Carson WE 3rd (2015) Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol Immunother 64(2):149–159. doi: 10.1007/s00262-014-1618-8 PubMedCrossRefGoogle Scholar
  45. 45.
    Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D, Baniyash M, Umansky V (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Invest Dermatol 133(6):1610–1619. doi: 10.1038/jid.2012.444 PubMedCrossRefGoogle Scholar
  46. 46.
    Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P (2011) Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy 31(8):813–828. doi: 10.1592/phco.31.8.813 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gross G, Eshhar Z (2016) Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T Cell therapy. Annu Rev Pharmacol Toxicol 56:59–83. doi: 10.1146/annurev-pharmtox-010814-124844 PubMedCrossRefGoogle Scholar
  48. 48.
    Wolchok JD, Chan TA (2014) Cancer: antitumour immunity gets a boost. Nature 515(7528):496–498. doi: 10.1038/515496a PubMedCrossRefGoogle Scholar
  49. 49.
    Gustafson MP, Lin Y, New KC, Bulur PA, O’Neill BP, Gastineau DA, Dietz AB (2010) Systemic immune suppression in glioblastoma: the interplay between CD14 + HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol 12(7):631–644. doi: 10.1093/neuonc/noq001 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 70(4):443–455. doi: 10.1002/pros.21078 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB (2011) Immunosuppressive CD14 + HLA-DR(low)/- monocytes in B-cell non-Hodgkin lymphoma. Blood 117(3):872–881. doi: 10.1182/blood-2010-05-283820 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Laborde RR, Lin Y, Gustafson MP, Bulur PA, Dietz AB (2014) Cancer Vaccines in the World of Immune Suppressive Monocytes (CD14(+)HLA-DR(lo/neg) Cells): the Gateway to Improved Responses. Front Immunol 5:147. doi: 10.3389/fimmu.2014.00147 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918. doi: 10.1007/s00262-013-1396-8 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Combe P, de Guillebon E, Thibault C, Granier C, Tartour E, Oudard S (2015) Trial watch: therapeutic vaccines in metastatic renal cell carcinoma. Oncoimmunology 4(5):e1001236. doi: 10.1080/2162402X.2014.1001236 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L, Graeber TG, West BL, Bollag G, Ribas A (2014) Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res 74(1):153–161. doi: 10.1158/0008-5472.CAN-13-1816 PubMedCrossRefGoogle Scholar
  56. 56.
    Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo RP, Ayala A, Espat NJ, Junghans RP, Katz SC (2015) Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64(7):817–829. doi: 10.1007/s00262-015-1692-6 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, El-Etriby R, Galli S, Tsokos MG, Orentas RJ, Mackall CL (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for Sarcomas. Cancer Immunol Res 4(10):869–880. doi: 10.1158/2326-6066.CIR-15-0230 PubMedCrossRefGoogle Scholar
  58. 58.
    Kitano S, Postow MA, Ziegler CG, Kuk D, Panageas KS, Cortez C, Rasalan T, Adamow M, Yuan J, Wong P, Altan-Bonnet G, Wolchok JD, Lesokhin AM (2014) Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol Res 2(8):812–821. doi: 10.1158/2326-6066.CIR-14-0013 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63(3):247–257. doi: 10.1007/s00262-013-1508-5 PubMedCrossRefGoogle Scholar
  60. 60.
    Bjoern J, Juul Nitschke N, Zeeberg Iversen T, Schmidt H, Fode K, Svane IM (2016) Immunological correlates of treatment and response in stage IV malignant melanoma patients treated with Ipilimumab. Oncoimmunology. 5(4):e1100788. doi: 10.1080/2162402X.2015.1100788 PubMedCrossRefGoogle Scholar
  61. 61.
    Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918. doi: 10.1158/1078-0432.CCR-15-2412 PubMedCrossRefGoogle Scholar
  62. 62.
    Inzucchi SE (2013) Diagnosis of diabetes. N Engl J Med 368(2):193. doi: 10.1056/NEJMc1212738 PubMedCrossRefGoogle Scholar
  63. 63.
    Nishida K, Otsu K (2017) Inflammation and metabolic cardiomyopathy. Cardiovasc Res 113(4):389–398. doi: 10.1093/cvr/cvx012 PubMedCrossRefGoogle Scholar
  64. 64.
    American Diabetes A (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90. doi: 10.2337/dc14-S081 CrossRefGoogle Scholar
  65. 65.
    Zaccardi F, Webb DR, Yates T, Davies MJ (1084) Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J 2016(92):63–69. doi: 10.1136/postgradmedj-2015-133281 Google Scholar
  66. 66.
    Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, Holgate ST, Jonsson LS, Latulippe ME, Marcos A, Moreines J, M’Rini C, Muller M, Pawelec G, van Neerven RJ, Watzl B, Zhao J (2013) A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 109(Suppl 1):S1–S34. doi: 10.1017/S0007114512005119 PubMedCrossRefGoogle Scholar
  67. 67.
    Jin C, Lu L, Zhang RY, Zhang Q, Ding FH, Chen QJ, Shen WF (2009) Association of serum glycated albumin, C-reactive protein and ICAM-1 levels with diffuse coronary artery disease in patients with type 2 diabetes mellitus. Clin Chim Acta 408(1–2):45–49. doi: 10.1016/j.cca.2009.07.003 PubMedCrossRefGoogle Scholar
  68. 68.
    Kornum JB, Thomsen RW, Riis A, Lervang HH, Schonheyder HC, Sorensen HT (2007) Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care 30(9):2251–2257. doi: 10.2337/dc06-2417 PubMedCrossRefGoogle Scholar
  69. 69.
    Prasad K (2006) C-reactive protein (CRP)-lowering agents. Cardiovasc Drug Rev 24(1):33–50. doi: 10.1111/j.1527-3466.2006.00033.x PubMedCrossRefGoogle Scholar
  70. 70.
    Del Canizo Gomez FJ, Fernandez Perez C, Moreno Ruiz I, de Gorospe Perez-Jauregui C, Silveira Rodriguez B, Gonzalez Losada T, Segura Galindo A (2011) Microvascular complications and risk factors in patients with type 2 diabetes. Endocrinol Nutr. 58(4):163–168. doi: 10.1016/j.endonu.2011.01.006 PubMedCrossRefGoogle Scholar
  71. 71.
    Navarro JF, Mora C, Maca M, Garca J (2003) Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus. Am J Kidney Dis 42(1):53–61. doi: 10.1016/S0272-6386(03)00408-6 PubMedCrossRefGoogle Scholar
  72. 72.
    Fronczyk A, Moleda P, Safranow K, Piechota W, Majkowska L (2014) Increased concentration of C-reactive protein in obese patients with type 2 diabetes is associated with obesity and presence of diabetes but not with macrovascular and microvascular complications or glycemic control. Inflammation 37(2):349–357. doi: 10.1007/s10753-013-9746-4 PubMedCrossRefGoogle Scholar
  73. 73.
    Inzucchi SE (2012) Clinical practice. Diagnosis of diabetes. N Engl J Med 367(6):542–550. doi: 10.1056/NEJMcp1103643 PubMedCrossRefGoogle Scholar
  74. 74.
    Di Angelantonio E, Gao P, Khan H, Butterworth AS, Wormser D, Kaptoge S, Kondapally Seshasai SR, Thompson A, Sarwar N, Willeit P, Ridker PM, Barr EL, Khaw KT, Psaty BM, Brenner H, Balkau B, Dekker JM, Lawlor DA, Daimon M, Willeit J, Njolstad I, Nissinen A, Brunner EJ, Kuller LH, Price JF, Sundstrom J, Knuiman MW, Feskens EJ, Verschuren WM, Wald N, Bakker SJ, Whincup PH, Ford I, Goldbourt U, Gomez-de-la-Camara A, Gallacher J, Simons LA, Rosengren A, Sutherland SE, Bjorkelund C, Blazer DG, Wassertheil-Smoller S, Onat A, Marin Ibanez A, Casiglia E, Jukema JW, Simpson LM, Giampaoli S, Nordestgaard BG, Selmer R, Wennberg P, Kauhanen J, Salonen JT, Dankner R, Barrett-Connor E, Kavousi M, Gudnason V, Evans D, Wallace RB, Cushman M, D’Agostino RB Sr, Umans JG, Kiyohara Y, Nakagawa H, Sato S, Gillum RF, Folsom AR, van der Schouw YT, Moons KG, Griffin SJ, Sattar N, Wareham NJ, Selvin E, Thompson SG, Danesh J (2014) Glycated hemoglobin measurement and prediction of cardiovascular disease. JAMA 311(12):1225–1233. doi: 10.1001/jama.2014.1873 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Baniyash M (2016) Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy. Cancer Immunol Immunother 65(7):857–867. doi: 10.1007/s00262-016-1849-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.The Lautenberg Center for General and Tumor Immunology, Faculty of Medicine, Israel-Canada Medical Research InstituteThe Hebrew UniversityJerusalemIsrael

Personalised recommendations