Abstract
Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.
This is a preview of subscription content, access via your institution.

Abbreviations
- CCL:
-
Chemokine (C–C motif) ligand
- mDCs:
-
Myeloid dendritic cells
- MM:
-
Multiple myeloma
- M-MDSCs:
-
Monocytic myeloid-derived suppressor cells
- NETs:
-
Neutrophil extracellular traps
- OCL:
-
Osteoclasts
- pDCs:
-
Plasmacytoid dendritic cells
- PMN-MDSCs:
-
Polymorphonuclear myeloid-derived suppressor cells
- PSGL-1:
-
P-selectin glycoprotein ligand
- RANK:
-
Receptor activator of NK-kappaB
- RANKL:
-
Receptor activator of NK-kappaB ligand
- TME:
-
Tumor microenvironment
References
- 1.
Meads M, Gatenby R, Dalton W (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9(9):665–674
- 2.
ACS (2017) Cancer facts and figs. 2017. American Cancer Society. http://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html. Accessed 27 Jan 2017
- 3.
Bain B, Clark D, Lampert I, Wilkins B (2001) Bone marrow pathology, 3rd edn. Blackwell Science, Oxford
- 4.
Wong D, Winter O, Hartig C, Siebels S, Szyska M, Tiburzy B, Meng L, Kulkarni U, Fähnrich A, Bommert K, Bargou R, Berek C, Chu V, Bogen B, Jundt F, Manz R (2014) Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches. PLoS One 9(10):e109018
- 5.
Chu V, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee J, Löhning M, Berek C (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12(2):151–159
- 6.
Wong T, Kita H, Hanson C, Walters D, Arendt B, Jelinek D (2013) Induction of malignant plasma cell proliferation by eosinophils. PLoS One 8(7):e70554
- 7.
Bronte V, Brandau S, Chen S, Colombo M, Frey A, Greten T, Mandruzzato S, Murray P, Ochoa A, Ostrand-Rosenberg S, Rodriguez P, Sica A, Umansky V, Vonderheide R, Gabrilovich D (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150
- 8.
Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, Partlova S, Garfall A, Vogl DT, Xu X, Knight SC, Malietzis G, Lee GH, Eruslanov E, Albelda SM, Wang X, Mehta JL, Bewtra M, Rustgi A, Hockstein N, Witt R, Masters G, Nam B, Smirnov D, Sepulveda MA, Gabrilovich DI (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 1(2):aaf8943. doi:10.1126/sciimmunol.aaf8943
- 9.
Ramachandran I, Condamine T, Lin C, Herlihy S, Garfall A, Vogl D, Gabrilovich D, Nefedova Y (2016) Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Lett 371(1):117–124
- 10.
Binsfeld M, Muller J, Lamour V, De Veirman K, De Raeve H, Bellahcène A, Van Valckenborgh E, Baron F, Beguin Y, Caers J, Heusschen R (2016) Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7(25):37931–37943
- 11.
Gorgun G, Whitehill G, Anderson J, Hideshima T, Maguire C, Laubach J, Raje N, Munshi N, Richardson P, Anderson K (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121(15):2975–2987
- 12.
Favaloro J, Liyadipitiya T, Brown R, Yang S, Suen H, Woodland N, Nassif N, Hart D, Fromm P, Weatherburn C, Gibson J, Ho P, Joshua D (2014) Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma 55(12):2893–2900
- 13.
Van Valckenborgh E, Schouppe E, Movahedi K, De Bruyne E, Menu E, De Baetselier P, Vanderkerken K, Van Ginderachter J (2012) Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26(11):2424–2428
- 14.
Ramachandran I, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190(7):3815–3823
- 15.
Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203(12):2691–2702
- 16.
Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190(7):3815–3823. doi:10.4049/jimmunol.1203373
- 17.
De Veirman K, Van Ginderachter J, Lub S, De Beule N, Thielemans K, Bautmans I, Oyajobi B, De Bruyne E, Menu E, Lemaire M, Van Riet I, Vanderkerken K, Van Valckenborgh E (2015) Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget 6(12):10532–10547
- 18.
Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639. doi:10.1371/journal.ppat.1000639
- 19.
Park J, Wysocki R, Amoozgar Z, Maiorino L, Fein M, Jorns J, Schott A, Kinugasa-Katayama Y, Lee Y, Won N, Nakasone E, Hearn S, Küttner V, Qiu J, Almeida A, Perurena N, Kessenbrock K, Goldberg M, Egeblad M (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8(361):361ra138
- 20.
Tohme S, Yazdani H, Al-Khafaji A, Chidi A, Loughran P, Mowen K, Wang Y, Simmons R, Huang H, Tsung A (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76(6):1367–1380
- 21.
Demers M, Wong S, Martinod K, Gallant M, Cabral J, Wang Y, Wagner D (2016) Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5(5):e1134073
- 22.
Berger-Achituv S, Brinkmann V, Abed UA, Kühn LI, Ben-Ezra J, Elhasid R, Zychlinsky A (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4:48. doi:10.3389/fimmu.2013.00048
- 23.
Sangaletti S, Tripodo C, Vitali C, Portararo P, Guarnotta C, Casalini P, Cappetti B, Miotti S, Pinciroli P, Fuligni F, Fais F, Piccaluga PP, Colombo M (2014) Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 4(1):110–129
- 24.
Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458
- 25.
Cools-Lartigue J, Spicer J, Najmeh S, Ferri L (2014) Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 71(21):4179–4194
- 26.
Ericson S, Zhao Y, Gao H, Miller K, Gibson L, Lynch J, Landreth K (1998) Interleukin-6 production by human neutrophils after Fc-receptor cross-linking or exposure to granulocyte colony-stimulating factor. Blood 91(6):2099–2107
- 27.
Sawant A, Deshane J, Jules J, Lee C, Harris B, Feng X, Ponnazhagan S (2013) Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res 73(2):672–682
- 28.
Zhuang J, Zhang J, Lwin S, Edwards J, Edwards C, Mundy G, Yang X (2012) Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS One 7(11):e48871
- 29.
Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114(17):3625–3628
- 30.
Suyanı E, Sucak G, Akyürek N, Sahin S, Baysal N, Yağcı M, Haznedar R (2013) Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Ann Hematol 92(5):669–677
- 31.
Panchabhai S, Kelemen K, Ahmann G, Sebastian S, Mantei J, Fonseca R (2016) Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma. Leukemia 30(4):951–954
- 32.
Zheng Y, Yang J, Qian J, Qiu P, Hanabuchi S, Lu Y, Wang Z, Liu Z, Li H, He J, Lin P, Weber D, Davis R, Kwak L, Cai Z, Yi Q (2013) PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 27(3):702–710
- 33.
Gutiérrez-González A, Martínez-Moreno M, Samaniego R, Arellano-Sánchez N, Salinas-Muñoz L, Relloso M, Valeri A, Martínez-López J, Corbí Á, Hidalgo A, García-Pardo Á, Teixidó J, Sánchez-Mateos P (2016) Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma. Blood 128(18):2241–2252
- 34.
Beyar-Katz O, Magidey K, Ben-Tsedek N, Alishekevitz D, Timaner M, Miller V, Lindzen M, Yarden Y, Avivi I, Shaked Y (2016) Bortezomib-induced pro-inflammatory macrophages as a potential factor limiting anti-tumour efficacy. J Pathol 239(3):262–273
- 35.
Li Y, Zheng Y, Li T, Wang Q, Qian J, Lu Y, Zhang M, Bi E, Yang M, Reu F, Yi Q, Cai Z (2015) Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget 6(27):24218–24229
- 36.
Lee C, Oh J, Park J, Choi J, Bae E, Lee H, Jung W, Lee D, Ahn K, Yoon S (2013) TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. Biomed Res Int 2013:580135
- 37.
Alexandrakis M, Goulidaki N, Pappa C, Boula A, Psarakis F, Neonakis I, Tsirakis G (2015) Interleukin-10 induces both plasma cell proliferation and angiogenesis in multiple myeloma. Pathol Oncol Res 21(4):929–934
- 38.
Colonna M, Trinchieri G, Liu Y (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226
- 39.
O’Doherty U, Peng M, Gezelter S, Swiggard W, Betjes M, Bhardwaj N, Steinman R (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82(3):487–493
- 40.
Chauhan D, Singh A, Brahmandam M, Carrasco R, Bandi M, Hideshima T, Bianchi G, Podar K, Tai Y, Mitsiades C, Raje N, Jaye D, Kumar S, Richardson P, Munshi N, Anderson K (2009) Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16(4):309–323
- 41.
Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, Fogli M, Ferri E, Della Cuna G, Tura S, Baccarani M, Lemoli R (2002) Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100(1):230–237
- 42.
Ray A, Tian Z, Das D, Coffman R, Richardson P, Chauhan D, Anderson K (2014) A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib. Leukemia 28(8):1716–1724
- 43.
Brimnes M, Svane I, Johnsen H (2006) Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma. Clin Exp Immunol 144(1):76–84
- 44.
Bahlis N, King A, Kolonias D, Carlson L, Liu H, Hussein M, Terebelo H, Byrne GJ, Levine B, Boise L, Lee K (2007) CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 109(11):5002–5010
- 45.
Murray M, Gavile C, Nair J, Koorella C, Carlson L, Buac D, Utley A, Chesi M, Bergsagel P, Boise L, Lee K (2014) CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 123(24):3770–3779
- 46.
Walker R, Lawson M, Buckle, CH, Snowden J, Chantry A (2014) Myeloma bone disease: pathogenesis, current treatments and future targets. Br Med Bull 111(1):117–138
- 47.
Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Osteoclasts enhance myeloma cell growth and survival via cell–cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104(8):2484–2491
- 48.
Yaccoby S, Wezeman MJ, Henderson A, Cottler-Fox M, Yi Q, Barlogie B, Epstein J (2004) Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res 64(6):2016–2023
- 49.
Lawson M, McDonald M, Kovacic N, Hua Khoo W, Terry R, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt J, Neil Dear T, Van Valckenborgh E, Baldock P, Rogers M, Eaton C, Vanderkerken K, Pettit A, Quinn J, Zannettino A, Phan T, Croucher P (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983
- 50.
Terpos E, Szydlo R, Apperley J, Hatjiharissi E, Politou M, Meletis J, Viniou N, Yataganas X, Goldman J, Rahemtulla A (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102(3):1064–1069
- 51.
Farrugia A, Atkins G, To L, Pan B, Horvath N, Kostakis P, Findlay D, Bardy P, Zannettino A (2003) Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 63(17):5438–5445
- 52.
Standal T, Seidel C, Hjertner Ø, Plesner T, Sanderson R, Waage A, Borset M, Sundan A (2002) Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100(8):3002–3007
- 53.
Schmiedel B, Scheible C, Nuebling T, Kopp H, Wirths S, Azuma M, Schneider P, Jung G, Grosse-Hovest L, Salih H (2013) RANKL expression, function, and therapeutic targeting in multiple myeloma and chronic lymphocytic leukemia. Cancer Res 73(2):683–694
- 54.
Tsubaki M, Takeda T, Yoshizumi M, Ueda E, Itoh T, Imano M, Satou T, Nishida S (2016) RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines. Tumour Biol 37(7):9099–9110
Acknowledgements
This work was supported by the National Institute of Health grants CA195020 and CA196788 (to Yulia Nefedova) and T32CA009171 (to Sarah E. Herlihy). The authors would like to thank Rachel E. Locke, PhD, for helping with the preparation of the manuscript.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no financial interests relevant to the subject of this paper.
Additional information
This paper is a Focussed Research Review based on a presentation given at the conference Regulatory Myeloid Suppressor Cells: From Basic Discovery to Therapeutic Application which was hosted by the Wistar Institute in Philadelphia, PA, USA, 16th–19th June, 2016. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews.
Rights and permissions
About this article
Cite this article
Herlihy, S.E., Lin, C. & Nefedova, Y. Bone marrow myeloid cells in regulation of multiple myeloma progression. Cancer Immunol Immunother 66, 1007–1014 (2017). https://doi.org/10.1007/s00262-017-1992-0
Received:
Accepted:
Published:
Issue Date:
Keywords
- Multiple myeloma
- Cancer
- Neutrophils
- Myeloid-derived suppressor cells
- Regulatory myeloid suppressor cells
- Chemoresistance