Skip to main content

Advertisement

Log in

FOXO3, estrogen receptor alpha, and androgen receptor impact tumor growth rate and infiltration of dendritic cell subsets differentially between male and female mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumors evade immune recognition and destruction in many ways including the creation of an immune-suppressive tumor microenvironment (TME). Dendritic cells (DC) that infiltrate the TME are tolerogenic, and suppress effector T cells and anti-tumor activity. Previous reports demonstrated that a key regulator of tolerance in DC is the transcription factor FOXO3. Gender disparity has been studied in cancer in relation to incidence, aggressiveness, and prognosis. Few studies have touched on the importance in relation to impact on the immune system. In the current study, we show that there are significant differences in tumor growth between males and females. Additionally, frequencies and the function of FOXO3 expressed by DC subsets that infiltrate tumors vary between genders. Our results show for the first time that DC FOXO3 expression and function is altered in females. In vitro results indicate that these differences may be the result of exposure to estrogen. These differences may be critical considerations for the enhancement of immunotherapy for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

BMDC:

Bone marrow-derived DC

ChIP:

Chromatin immunoprecipitation

DHT:

Dihydrotestosterone

E2:

17-β-estradiol,

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

HCC:

Hepatocellular carcinoma

Het:

Heterozygous

MDSC:

Myeloid-derived suppressor cell(s)

pDC:

Plasmacytoid DC

TADC:

Tumor-associated dendritic cell(s)

Tfm:

Testicular feminized mouse

TME:

Tumor microenvironment,

Treg:

T regulatory cell(s)

References

  1. Cutolo M, Sulli A, Straub RH (2014) Estrogen’s effects in chronic autoimmune/inflammatory diseases and progression to cancer. Expert Rev Clin Immunol 10(1):31–39. doi:10.1586/1744666x.2014.863149

    Article  CAS  PubMed  Google Scholar 

  2. Hwang TL, Chen CY (2012) Gender different response to immunonutrition in liver cirrhosis with sepsis in rats. Nutrients 4(3):231–242. doi:10.3390/nu4030231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klein SL, Marriott I, Fish EN (2015) Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg 109(1):9–15. doi:10.1093/trstmh/tru167

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krementsov DN, Noubade R, Dragon JA, Otsu K, Rincon M, Teuscher C (2014) Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells. Ann Neurol 75(1):50–66. doi:10.1002/ana.24020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCombe PA, Greer JM, Mackay IR (2009) Sexual dimorphism in autoimmune disease. Curr Mol Med 9(9):1058–1079

    Article  CAS  PubMed  Google Scholar 

  6. Nhamoyebonde S, Leslie A (2014) Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis 209(Suppl 3):S100–S106. doi:10.1093/infdis/jiu147

    Article  PubMed  Google Scholar 

  7. van Lunzen J, Altfeld M (2014) Sex differences in infectious diseases-common but neglected. J Infect Dis 209(Suppl 3):S79–S80. doi:10.1093/infdis/jiu159

    Article  PubMed  Google Scholar 

  8. Yeh SH, Chen PJ (2010) Gender disparity of hepatocellular carcinoma: the roles of sex hormones. Int Soc Cell 78(Suppl 1):172–179. doi:10.1159/000315247

    CAS  Google Scholar 

  9. Wichmann MW, Ayala A, Chaudry IH (1997) Male sex steroids are responsible for depressing macrophage immune function after trauma-hemorrhage. Am J Physiol 273(4 Pt 1):C1335–C1340

    CAS  PubMed  Google Scholar 

  10. Gilliver SC, Ashworth JJ, Mills SJ, Hardman MJ, Ashcroft GS (2006) Androgens modulate the inflammatory response during acute wound healing. J Cell Sci 119 (Pt 4):722–732. doi:10.1242/jcs.02786

    PubMed  Google Scholar 

  11. Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ (2001) Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142(3):1278–1283. doi:10.1210/endo.142.3.8032

    CAS  PubMed  Google Scholar 

  12. Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis E, Leibovich BC, Allison JP, Kwon ED (2004) Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173(10):6098–6108

    Article  CAS  PubMed  Google Scholar 

  13. Lai JJ, Lai KP, Zeng W, Chuang KH, Altuwaijri S, Chang C (2012) Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. Am J Pathol 181(5):1504–1512. doi:10.1016/j.ajpath.2012.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sachdeva M, Mo YY (2010) Stroma-mediated expression of estrogen and its role in cancer. Front Biosci 15:237–248

    Article  CAS  Google Scholar 

  15. Che Q, Liu BY, Liao Y, Zhang HJ, Yang TT, He YY, Xia YH, Lu W, He XY, Chen Z, Wang FY, Wan XP (2014) Activation of a positive feedback loop involving IL-6 and aromatase promotes intratumoral 17beta-estradiol biosynthesis in endometrial carcinoma microenvironment. Int J Cancer 135(2):282–294. doi:10.1002/ijc.28679

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, Sasano H (2005) Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer 12(4):701–720. doi:10.1677/erc.1.00834

    Article  CAS  PubMed  Google Scholar 

  17. Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY, Lai KP, Lin HY, Hsu JW, Keng P, Wu MC, Chang C (2009) Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med 206(5):1181–1199. doi:10.1084/jem.20082521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lai JJ, Lai KP, Chuang KH, Chang P, Yu IC, Lin WJ, Chang C (2009) Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Investig 119(12):3739–3751. doi:10.1172/JCI39335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Straub RH (2007) The complex role of estrogens in inflammation. Endocr Rev 28(5):521–574. doi:10.1210/er.2007-0001

    Article  CAS  PubMed  Google Scholar 

  20. Paharkova-Vatchkova V, Maldonado R, Kovats S (2004) Estrogen preferentially promotes the differentiation of CD11c + CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol 172(3):1426–1436

    Article  CAS  PubMed  Google Scholar 

  21. Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, Shawler T, Whitacre CC (2011) Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity. J Immunol 186(6):3346–3355. doi:10.4049/jimmunol.1001322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dejean AS, Beisner DR, Ch’en IL, Kerdiles YM, Babour A, Arden KC, Castrillon DH, DePinho RA, Hedrick SM (2009) Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 10(5):504–513. doi:10.1038/ni.1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thompson MG, Larson M, Vidrine A, Barrios K, Navarro F, Meyers K, Simms P, Prajapati K, Chitsike L, Hellman LM, Baker BM, Watkins SK (2015) FOXO3-NF-kappaB RelA protein complexes reduce proinflammatory cell signaling and function. J Immunol 195(12):5637–5647. doi:10.4049/jimmunol.1501758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stauffer JK, Scarzello AJ, Andersen JB, De Kluyver RL, Back TC, Weiss JM, Thorgeirsson SS, Wiltrout RH (2011) Coactivation of AKT and beta-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res 71(7):2718–2727. doi:10.1158/0008-5472.can-10-2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salem ML (2004) Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy 3(1):97–104

    Article  CAS  PubMed  Google Scholar 

  26. Yakimchuk K, Jondal M, Okret S (2013) Estrogen receptor alpha and beta in the normal immune system and in lymphoid malignancies. Mol Cell Endocrinol 375 (1–2):121–129. doi:10.1016/j.mce.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  27. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108(5):1435–1440. doi:10.1182/blood-2006-03-006403

    Article  CAS  PubMed  Google Scholar 

  28. Guo S, Sonenshein GE (2004) Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 24(19):8681–8690. doi:10.1128/MCB.24.19.8681-8690.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang L, Xie S, Jamaluddin MS, Altuwaijri S, Ni J, Kim E, Chen YT, Hu YC, Wang L, Chuang KH, Wu CT, Chang C (2005) Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate, FOXO3a, and their roles in apoptosis of LNCaP prostate cancer cells. J Biol Chem 280(39):33558–33565. doi:10.1074/jbc.M504461200

    Article  CAS  PubMed  Google Scholar 

  30. Lin PY, Sun L, Thibodeaux SR, Ludwig SM, Vadlamudi RK, Hurez VJ, Bahar R, Kious MJ, Livi CB, Wall SR, Chen L, Zhang B, Shin T, Curiel TJ (2010) B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol 185(5):2747–2753. doi:10.4049/jimmunol.1000496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munn DH (2012) Blocking IDO activity to enhance anti-tumor immunity. Front Biosci (Elite Ed) 4:734–745

    Article  Google Scholar 

  32. Mukhopadhyay KD, Liu Z, Bandyopadhyay A, Kirma NB, Tekmal RR, Wang S, Sun LZ (2015) Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells. PLoS ONE 10(4):e0121136. doi:10.1371/journal.pone.0121136

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Michael Nishimura for research oversight and manuscript preparation. We would also like to thank Dr. Jose Guevara-Patino for his critical review and discussions during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie K. Watkins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report.

Funding

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers R00CA151294. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This research was further supported by Loyola University Chicago start-up funds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 367 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, M.G., Peiffer, D.S., Larson, M. et al. FOXO3, estrogen receptor alpha, and androgen receptor impact tumor growth rate and infiltration of dendritic cell subsets differentially between male and female mice. Cancer Immunol Immunother 66, 615–625 (2017). https://doi.org/10.1007/s00262-017-1972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1972-4

Keywords

Navigation