Skip to main content

Advertisement

Log in

Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chronic inflammation, typical of various diseases including cancer, is a “silent bomb within the body,” leading to complications that are only evident in most cases upon their appearance, when disease is already deteriorated. Chronic inflammation is associated with accumulation of myeloid-derived suppressor cells (MDSCs), which lead to immunosuppression. MDSCs have numerous harmful effects as they support tumor initiation, tumor growth and spreading, which in turn, perpetuate the inflammatory and suppressive conditions, thus preventing anticancer responses. As the concept of the immune system combating many types of tumors was revived in recent years, immunotherapy has dramatically changed the view of cancer treatment, and numerous novel therapies have been developed and approved by the FDA. However, cumulative clinical data point at very limited success rates. It is most likely that the developing chronic inflammation and MDSC-induced immunosuppression interfere with responses to such treatments and hence are major obstacles in achieving higher response rates to immune-based therapies. Moreover, chemotherapies were shown to have adverse immunoregulatory effects, enhancing or decreasing MDSC levels and activity, thus affecting treatment success. Therefore, therapeutic manipulations of chronic inflammation and MDSCs during cancer development are likely to enhance efficacy of immune- and chemo-based treatments, switching chronic pro-cancer inflammatory environments to an anticancerous milieu. Based on the functional relevance of immune networking in tumors, it is critical to merge monitoring immune system biomarkers into the traditional patient’s categorization and treatment regimens. This will provide new tools for clinical practice, allowing appropriate management of cancer patients toward a better-personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARG-1:

Arginase-1

BM:

Bone marrow

CP:

Cyclophosphamide

CRC:

Colorectal cancer

DCs:

Dendritic cells

IBD:

Inflammatory bowel diseases

iNOS:

Inducible nitric oxide synthase

MDSCs:

Myeloid-derived suppressor cells

NO:

Nitric oxide

PFS:

Progression-free survival

RAGE:

Receptor for advanced glycation end products

ROS:

Reactive oxygen species

TLR:

Toll-like receptor

Tregs:

Regulatory T cells

References

  1. Baniyash M, Sade-Feldman M, Kanterman J (2014) Chronic inflammation and cancer: suppressing the suppressors. Cancer Immunol Immunother 63(1):11–20. doi:10.1007/s00262-013-1468-9

    Article  CAS  PubMed  Google Scholar 

  2. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752. doi:10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A et al (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177(7):4763–4772. doi:10.4049/jimmunol.177.7.4763

    Article  CAS  PubMed  Google Scholar 

  4. Kanterman J, Sade-Feldman M, Baniyash M (2012) New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 22(4):307–318. doi:10.1016/j.semcancer.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  5. Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38(3):541–554. doi:10.1016/j.immuni.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  6. Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P (2012) PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest 41(6–7):635–657. doi:10.3109/08820139.2012.695417

    Article  CAS  PubMed  Google Scholar 

  7. Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z et al (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252(1):86–92. doi:10.1016/j.canlet.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  8. Yang WC, Ma G, Chen SH, Pan PY (2013) Polarization and reprogramming of myeloid-derived suppressor cells. J Mol Cell Biol 5(3):207–209. doi:10.1093/jmcb/mjt009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W et al (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 108(41):17111–17116. doi:10.1073/pnas.1108121108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184(6):3106–3116. doi:10.4049/jimmunol.0902661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baniyash M (2004) TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol 4(9):675–687. doi:10.1038/nri1434

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277(24):21123–21129. doi:10.1074/jbc.M110675200

    Article  CAS  PubMed  Google Scholar 

  15. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77. doi:10.1158/0008-5472.CAN-09-2587

    Article  CAS  PubMed  Google Scholar 

  16. Schmielau J, Nalesnik MA, Finn OJ (2001) Suppressed T-cell receptor zeta chain expression and cytokine production in pancreatic cancer patients. Clin Cancer Res 7(3 Suppl):933s–939s

    CAS  PubMed  Google Scholar 

  17. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P et al (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168(2):689–695. doi:10.4049/jimmunol.168.2.689

    Article  CAS  PubMed  Google Scholar 

  18. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208(10):1949–1962. doi:10.1084/jem.20101956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766

    CAS  PubMed  Google Scholar 

  20. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54. doi:10.1038/nm976

    Article  PubMed  Google Scholar 

  21. Crook KR, Jin M, Weeks MF, Rampersad RR, Baldi RM, Glekas AS et al (2015) Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol 97(3):573–582. doi:10.1189/jlb.4A0314-139R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182(6):3801–3808. doi:10.4049/jimmunol.0801548

    Article  CAS  PubMed  Google Scholar 

  23. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816. doi:10.1053/j.gastro.2011.01.057

    Article  CAS  PubMed  Google Scholar 

  24. Kidane D, Murphy DL, Sweasy JB (2014) Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection. Oncogenesis 3:e128. doi:10.1038/oncsis.2014.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiba T, Marusawa H, Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143(3):550–563. doi:10.1053/j.gastro.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Ma Y, Han W, Yang L, He L, Wang H (2015) The regulation of miRNAs in inflammation-related carcinogenesis. Curr Pharm Des 21(21):3023–3031. doi:10.2174/1381612821666150514105606#sthash.8nPnrzyJ.dpuf

    Article  CAS  PubMed  Google Scholar 

  27. Katoh H, Watanabe M (2015) Myeloid-derived suppressor cells and therapeutic strategies in cancer. Mediat Inflamm 2015:159269. doi:10.1155/2015/159269

    Article  Google Scholar 

  28. Sceneay J, Parker BS, Smyth MJ, Moller A (2013) Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncoimmunology 2(1):e22355. doi:10.4161/onci.22355

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. doi:10.1016/j.ccr.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  30. Kitamura T, Fujishita T, Loetscher P, Revesz L, Hashida H, Kizaka-Kondoh S et al (2010) Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proc Natl Acad Sci USA 107(29):13063–13068. doi:10.1073/pnas.1002372107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mauti LA, Le Bitoux MA, Baumer K, Stehle JC, Golshayan D, Provero P et al (2011) Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J Clin Invest 121(7):2794–2807. doi:10.1172/JCI41936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Kosaka A, Ikeura M, Kohanbash G, Fellows-Mayle W, Snyder LA et al (2013) Premetastatic soil and prevention of breast cancer brain metastasis. Neuro Oncol 15(7):891–903. doi:10.1093/neuonc/not031

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, Lasry A, Goldshtein A et al (2014) Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res 74(21):6022–6035. doi:10.1158/0008-5472.CAN-14-0657

    Article  CAS  PubMed  Google Scholar 

  34. Maru GB, Gandhi K, Ramchandani A, Kumar G (2014) The role of inflammation in skin cancer. Adv Exp Med Biol 816:437–469. doi:10.1007/978-3-0348-0837-8_17

    Article  CAS  PubMed  Google Scholar 

  35. Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K et al (2015) Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res 21(24):5453–5459. doi:10.1158/1078-0432.CCR-15-0676

    Article  CAS  PubMed  Google Scholar 

  36. Kitano S, Postow MA, Ziegler CG, Kuk D, Panageas KS, Cortez C et al (2014) Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol Res 2(8):812–821. doi:10.1158/2326-6066.CIR-14-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532. doi:10.1056/NEJMoa1503093

    Article  CAS  PubMed  Google Scholar 

  38. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017. doi:10.1056/NEJMoa1414428

    Article  PubMed  Google Scholar 

  39. Makalowski J, Abken H (2013) Adoptive cell therapy of melanoma: the challenges of targeting the beating heart, Melanoma - From Early Detection to Treatment. Dr Ht Duc (Ed), ISBN: 978-953-51-0961-7, InTech. www.intechopen.com/books/melanoma-from-early-detection-to-treatment/adoptive-cell-therapy-of-melanoma-the-challenges-of-targeting-the-beating-heart. Accessed January 30, 2013. doi:10.5772/53619

  40. Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L et al (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Invest Dermatol 133(6):1610–1619. doi:10.1038/jid.2012.444

    Article  CAS  PubMed  Google Scholar 

  41. Boniface JD, Poschke I, Mao Y, Kiessling R (2012) Tumor-dependent down-regulation of the zeta-chain in T-cells is detectable in early breast cancer and correlates with immune cell function. Int J Cancer 131(1):129–139. doi:10.1002/ijc.26355

    Article  PubMed  Google Scholar 

  42. Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4(1):e954829. doi:10.4161/21624011.2014.954829

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S et al (2013) Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 59(5):1007–1013. doi:10.1016/j.jhep.2013.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodi FS, Lee S, McDermott DF, Rao UN, Butterfield LH, Tarhini AA et al (2014) Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312(17):1744–1753. doi:10.1001/jama.2014.13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG et al (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10:464. doi:10.1186/1471-2407-10-464

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kusmartsev S, Eruslanov E, Kubler H, Tseng T, Sakai Y, Su Z et al (2008) Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol 181(1):346–353. doi:10.4049/jimmunol.181.1.346

    Article  CAS  PubMed  Google Scholar 

  47. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P et al (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102(11):4185–4190. doi:10.1073/pnas.0409783102

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S, Weinschenk T et al (2012) Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep 2(3):628–639. doi:10.1016/j.celrep.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  49. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307. doi:10.1158/0008-5472.CAN-06-1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918. doi:10.1007/s00262-013-1396-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the support of the Society of Research Associates of the Lautenberg Center, the Concern Foundation of Los Angeles, and the Harold B. Abramson Chair in Immunology. Thanks to Drs. Lynn Wang and Leonor Daniel and Yaron Meirow for reviewing the manuscript and my team Julia Kanterman-Rifman, Yaron Meirow, Kerem Ben-Meir, Hadas Ashkenazi, Nira Twaik, Hana Vardi, Drs. Lynn Wang, Leonor Daniel, Ivan Mikula and my former student Dr. Moshe Sade-Feldman for forming the research and clinical basis for this review.

This study was supported by the Israel Science Foundation (ISF), the Israeli Ministry of Health, the Joint German-Israeli Research Program (DKFZ), the Israel Cancer Research Fund (ICRF), the China-Israel Binational Science Foundation (NSFC-ISF), The Nofar program of the Chief Scientist Office (OCS), Israel and by the Joseph and Matilda Melnick Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Baniyash.

Ethics declarations

Conflict of interest

There is no conflict of interest in publishing this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baniyash, M. Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy. Cancer Immunol Immunother 65, 857–867 (2016). https://doi.org/10.1007/s00262-016-1849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1849-y

Keywords

Navigation