Skip to main content

Advertisement

Log in

Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: a novel combination for cancer immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Previously, we combined p19Arf (Cdkn2a, tumor suppressor protein) and interferon beta (IFN-β, immunomodulatory cytokine) gene transfer in order to enhance cell death in a murine model of melanoma. Here, we present evidence of the immune response induced when B16 cells succumbing to death due to treatment with p19Arf and IFN-β are applied in vaccine models. Use of dying cells for prophylactic vaccination was investigated, identifying conditions for tumor-free survival. After combined p19Arf and IFN-β treatment, we observed immune rejection at the vaccine site in immune competent and nude mice with normal NK activity, but not in NOD-SCID and dexamethasone immunosuppressed mice (NK deficient). Combined treatment induced IL-15, ULBP1, FAS/APO1 and KILLER/DR5 expression, providing a mechanism for NK activation. Prophylactic vaccination protected against tumor challenge, where markedly delayed progression and leukocyte infiltration were observed. Analysis of primed lymphocytes revealed secretion of TH1-related cytokines and depletion protocols showed that both CD4+ and CD8+ T lymphocytes are necessary for immune protection. However, application of this prophylactic vaccine where cells were treated either with IFN-β alone or combined with p19Arf conferred similar immune protection and cytokine activation, yet only the combination was associated with increased overall survival. In a therapeutic vaccine protocol, only the combination was associated with reduced tumor progression. Our results indicate that by harnessing cell death in an immunogenic context, our p19Arf and IFN-β combination offers a clear advantage when both genes are included in the vaccine and warrants further development as a novel immunotherapy for melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ad:

Adenovirus

Arf:

Alternate reading frame

CCL:

Chemokine (C–C motif) ligand

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

CXCL:

Chemokine (C–X–C motif) ligand

DEX:

Dexamethasone

EPM-UNIFESP:

Escola Paulista de Medicina-Universidade Federal de São Paulo

FAS/APO1:

Fas receptor/apoptosis antigen 1

FMUSP:

Faculdade de Medicina-Universidade de São Paulo

H60a:

Histocompatibility 60a

ICESP:

Instituto do Câncer do Estado de São Paulo

IU:

Infectious units

KILLER/DR5:

KILLER/death receptor 5

LUC:

Luciferase

MDM2, 4:

Murine double minute 2, 4

MOI:

Multiplicity of infection

NOD-SCID:

Non-obese diabetic-severe combined immunodeficiency

PG:

p53-responsive promoter

PGTxβ:

p53-responsive promoter

Raet 1d, e:

Retinoic acid early transcript 1d, e

RGD:

Argenylglycylaspartic acid

SEM:

Standard error of the mean

TP53:

Tumor protein 53, p53

ULBP1:

UL16-binding protein 1

UNIFESP:

Universidade Federal de São Paulo

References

  1. Lu M, Miller P, Lu X (2014) Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Lett 588:2616–2621

    Article  CAS  PubMed  Google Scholar 

  2. Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6:663–673

    Article  CAS  PubMed  Google Scholar 

  3. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1:20–26

    Article  CAS  PubMed  Google Scholar 

  4. Kaufman HL, Kirkwood JM, Hodi FS et al (2013) The society for immunotherapy of cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol 10:588–598

    Article  CAS  PubMed  Google Scholar 

  5. Thalanayar PM, Agarwala SS, Tarhini AA (2014) Melanoma adjuvant therapy. Chin Clin Oncol 3:26

    PubMed  Google Scholar 

  6. Diamond MS, Kinder M, Matsushita H et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208:1989–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920

    PubMed  Google Scholar 

  8. Bajgelman MC, Strauss BE (2008) Development of an adenoviral vector with robust expression driven by p53. Virology 371:8–13

    Article  CAS  PubMed  Google Scholar 

  9. Merkel CA, Medrano RF, Barauna VG, Strauss BE (2013) Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo. Cancer Gene Ther 20:317–325

    Article  CAS  PubMed  Google Scholar 

  10. Oba-Shinjo SM, Correa M, Ricca TI et al (2006) Melanocyte transformation associated with substrate adhesion impediment. Neoplasia 8:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keil D, Luebke RW, Pruett SB (2001) Quantifying the relationship between multiple immunological parameters and host resistance: probing the limits of reductionism. J Immunol 167:4543–4552

    Article  CAS  PubMed  Google Scholar 

  12. Budzynski W, Radzikowski C (1994) Cytotoxic cells in immunodeficient athymic mice. Immunopharmacol Immunotoxicol 16:319–346

    Article  CAS  PubMed  Google Scholar 

  13. Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    CAS  PubMed  Google Scholar 

  14. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  15. Kepp O, Galluzzi L, Martins I et al (2011) Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 30:61–69

    Article  CAS  PubMed  Google Scholar 

  16. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mocikat R, Braumuller H, Gumy A et al (2003) Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569

    Article  CAS  PubMed  Google Scholar 

  18. Wong JL, Berk E, Edwards RP, Kalinski P (2013) IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res 73:4653–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 210:2057–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A (2011) Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 71:5998–6009

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues L, Bonorino C (2009) Role of IL-15 and IL-21 in viral immunity: applications for vaccines and therapies. Expert Rev Vaccines 8:167–177

    Article  CAS  PubMed  Google Scholar 

  22. Croce M, Orengo AM, Azzarone B, Ferrini S (2012) Immunotherapeutic applications of IL-15. Immunotherapy 4:957–969

    Article  CAS  PubMed  Google Scholar 

  23. Sutherland CL, Rabinovich B, Chalupny NJ, Brawand P, Miller R, Cosman D (2006) ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108:1313–1319

    Article  CAS  PubMed  Google Scholar 

  24. Yoon SR, Kim TD, Choi I (2015) Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 47:e141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Swiecki M, Cella M, Alber G, Schreiber RD, Gilfillan S, Colonna M (2012) Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection. Cell Host Microbe 11:631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the laboratories of Drs. José Eduardo Krieger (Universidade de São Paulo-USP) and Roger Chammas (Universidade de São Paulo-USP). We thank Dr. Elaine Guadelupe Rodrigues (Universidade Federal de São Paulo- UNIFESP) for helpful discussions as well as Jonatan Ersching and Dr. Mauricio Martins Rodrigues (Universidade Federal de São Paulo- UNIFESP) for assistance with antibody production. We also thank Camila Morais Melo (Faculdade de Medicina da Universidade de São Paulo-FMUSP) for assistance in the immunochemistry assay. Sao Paulo Research Foundation grants (Strauss, B.E) 13/25167-5, 11/50911-4; fellowships (Medrano, R.F.V) 13/09474-5, (Ribeiro, A.H) 11/10656-5, (Catani, J.P.P) 14/11524-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan E. Strauss.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano, R.F.V., Catani, J.P.P., Ribeiro, A.H. et al. Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: a novel combination for cancer immunotherapy. Cancer Immunol Immunother 65, 371–382 (2016). https://doi.org/10.1007/s00262-016-1807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1807-8

Keywords

Navigation