Skip to main content

Advertisement

Log in

Regulatory T cells, inherited variation, and clinical outcome in epithelial ovarian cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The immune system constitutes one of the host factors modifying outcomes in ovarian cancer. Regulatory T cells (Tregs) are believed to be a major factor in preventing the immune response from destroying ovarian cancers. Understanding mechanisms that regulate Tregs in the tumor microenvironment could lead to the identification of novel targets aimed at reducing their influence. In this study, we used immunofluorescence-based microscopy to enumerate Tregs, total CD4 T cells, and CD8+ cytotoxic T cells in fresh frozen tumors from over 400 patients with ovarian cancer (>80 % high-grade serous). We sought to determine whether Tregs were associated with survival and genetic variation in 79 genes known to influence Treg induction, trafficking, or function. We used Cox regression, accounting for known prognostic factors, to estimate hazard ratios (HRs) associated with T cell counts and ratios. We found that the ratios of CD8 T cells and total CD4 T cells to Tregs were associated with improved overall survival (CD8/Treg HR 0.84, p = 0.0089; CD4/Treg HR 0.88, p = 0.046) and with genetic variation in IL-10 (p = 0.0073 and 0.01, respectively). In multivariate analyses, the associations between the ratios and overall survival remained similar (IL-10 and clinical covariate-adjusted CD8/Treg HR 0.85, p = 0.031; CD4/Treg HR 0.87, p = 0.093), suggesting that this association was not driven by variation in IL-10. Thus, integration of novel tumor phenotyping measures with extensive clinical and genetic information suggests that the ratio of T cells to Tregs may be prognostic of outcome in ovarian cancer, regardless of inherited genotype in genes related to Tregs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

DAPI:

4′,6-Diamidino-2-phenylindole

HGSC:

High-grade serous carcinoma

HR:

Hazard ratio

IQR:

Interquartile range

PC:

Principal Component

Treg:

CD4 regulatory T cell

References

  1. Aletti GD, Gallenberg MM, Cliby WA, Jatoi A, Hartmann LC (2007) Current management strategies for ovarian cancer. Mayo Clin Proc 82:751–770

    Article  PubMed  Google Scholar 

  2. Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351:2519–2529. doi:10.1056/NEJMra041842

    Article  CAS  PubMed  Google Scholar 

  3. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA et al (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol 21:3194–3200. doi:10.1200/JCO.2003.02.153

    Article  CAS  PubMed  Google Scholar 

  4. Hoskins P, Vergote I, Cervantes A, Tu D, Stuart G, Zola P et al (2010) Advanced ovarian cancer: phase III randomized study of sequential cisplatin-topotecan and carboplatin-paclitaxel vs carboplatin-paclitaxel. J Natl Cancer Inst 102:1547–1556. doi:10.1093/jnci/djq362

    Article  CAS  PubMed  Google Scholar 

  5. Trimble EL, Birrer MJ, Hoskins WJ, Marth C, Petryshyn R, Quinn M et al (2010) Current academic clinical trials in ovarian cancer: Gynecologic Cancer Intergroup and US National Cancer Institute Clinical Trials Planning Meeting, May 2009. Int J Gynecol Cancer 20:1290–1298. doi:10.1111/IGC.0b013e3181ee1c01

    Article  PubMed Central  PubMed  Google Scholar 

  6. Winter WE III, Maxwell GL, Tian C, Carlson JW, Ozols RF, Rose PG et al (2007) Prognostic factors for stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol 25:3621–3627. doi:10.1200/JCO.2006.10.2517

    Article  PubMed  Google Scholar 

  7. Nelson BH (2015) New insights into tumor immunity revealed by the unique genetic and genomic aspects of ovarian cancer. Curr Opin Immunol 33C:93–100. doi:10.1016/j.coi.2015.02.004

    Article  Google Scholar 

  8. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213. doi:10.1056/NEJMoa020177

    Article  CAS  PubMed  Google Scholar 

  9. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543. doi:10.1073/pnas.0509182102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Preston CC, Goode EL, Hartmann LC, Kalli KR, Knutson KL (2011) Immunity and immune suppression in human ovarian cancer. Immunotherapy 3:539–556. doi:10.2217/imt.11.20

    Article  PubMed Central  PubMed  Google Scholar 

  11. Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS (2013) The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol 33:137–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Karyampudi L, Lamichhane P, Scheid AD, Kalli KR, Shreeder B, Krempski JW, Behrens MD, Knutson KL (2014) Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res 74:2974–2985. doi:10.1158/0008-5472.CAN-13-2564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Audia S, Nicolas A, Cathelin D, Larmonier N, Ferrand C, Foucher P et al (2007) Increase of CD4+CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes. Clin Exp Immunol 150:523–530. doi:10.1111/j.1365-2249.2007.03521.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen F, Hou M, Ye F, Lv W, Xie X (2009) Ovarian cancer cells induce peripheral mature dendritic cells to differentiate into macrophagelike cells in vitro. Int J Gynecol Cancer 19:1487–1493. doi:10.1111/IGC.0b013e3181bb70c6

    Article  PubMed  Google Scholar 

  15. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi:10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  16. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032. doi:10.4049/jimmunol.176.8.5023

    Article  CAS  PubMed  Google Scholar 

  17. Huarte E, Cubillos-Ruiz JR, Nesbeth YC, Scarlett UK, Martinez DG, Buckanovich RJ et al (2008) Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res 68:7684–7691. doi:10.1158/0008-5472.CAN-08-1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ko SY, Ladanyi A, Lengyel E, Naora H (2014) Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype. Am J Pathol 184:271–281. doi:10.1016/j.ajpath.2013.09.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H et al (2011) Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186:6905–6913. doi:10.4049/jimmunol.1100274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J (2013) Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 12:259–267. doi:10.7785/tcrt.2012.500312

    CAS  PubMed  Google Scholar 

  21. Le Page C, Marineau A, Bonza PK, Rahimi K, Cyr L, Labouba I et al (2012) BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. PLoS ONE 7:e38541. doi:10.1371/journal.pone.0038541

    Article  PubMed Central  PubMed  Google Scholar 

  22. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M et al (2006) FOXp3 expressing CD4+CD25+ and CD8+CD28 T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67:1–12. doi:10.1016/j.humimm.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. doi:10.1038/nri3073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Preston CC, Maurer MJ, Oberg AL, Visscher DW, Kalli KR, Hartmann LC, Goode EL, Knutson KL (2013) The ratios of CD8+ T cells to CD4+CD25+FOXp3+ and FOXp3 T cells correlate with poor clinical outcome in human serous ovarian cancer. PLoS ONE 8:e80063. doi:10.1371/journal.pone.0080063

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P et al (2005) Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65:5020–5026. doi:10.1158/0008-5472.CAN-04-4043

    Article  CAS  PubMed  Google Scholar 

  26. Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E et al (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FOXp3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:8326–8331. doi:10.1158/1078-0432.CCR-05-1244

    Article  CAS  PubMed  Google Scholar 

  27. Yang R, Cai Z, Zhang Y, Yutzy WHt, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res 66:6807–6815. doi:10.1158/0008-5472.CAN-05-3755

  28. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307. doi:10.1038/nri1806

    Article  CAS  PubMed  Google Scholar 

  29. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346. doi:10.1038/nm1201-1339

    Article  CAS  PubMed  Google Scholar 

  30. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194:2985–2991. doi:10.4049/jimmunol.1403134

    Article  PubMed  Google Scholar 

  31. Knutson KL, Disis ML, Salazar LG (2007) CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother 56:271–285. doi:10.1007/s00262-006-0194-y

    Article  PubMed  Google Scholar 

  32. Savage PA, Malchow S, Leventhal DS (2013) Basic principles of tumor-associated regulatory T cell biology. Trends Immunol 34:33–40. doi:10.1016/j.it.2012.08.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Le DT, Jaffee EM (2012) Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 72:3439–3444. doi:10.1158/0008-5472.CAN-11-3912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633. doi:10.1172/JCI25947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E, Azeke E, Disis ML (2006) IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 177:84–91

    Article  CAS  PubMed  Google Scholar 

  36. Goode EL, DeRycke M, Kalli KR, Oberg AL, Cunningham JM, Maurer MJ et al (2013) Inherited variants in regulatory T cell genes and outcome of ovarian cancer. PLoS ONE 8:e53903. doi:10.1371/journal.pone.0053903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Charbonneau B, Moysich KB, Kalli KR, Oberg AL, Vierkant RA, Fogarty ZC et al (2014) Large-scale evaluation of common variation in regulatory T cell-related genes and ovarian cancer outcome. Cancer Immunol Res 2:332–340. doi:10.1158/2326-6066.CIR-13-0136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Goode EL, Maurer MJ, Sellers TA, Phelan CM, Kalli KR, Fridley BL et al (2010) Inherited determinants of ovarian cancer survival. Clin Cancer Res 16:995–1007. doi:10.1158/1078-0432.CCR-09-2553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Aletti GD, Dowdy SC, Gostout BS, Jones MB, Stanhope CR, Wilson TO, Podratz KC, Cliby WA (2006) Aggressive surgical effort and improved survival in advanced-stage ovarian cancer. Obstet Gynecol 107:77–85. doi:10.1097/01.AOG.0000192407.04428.bb

    Article  PubMed  Google Scholar 

  40. Bristow RE, Montz FJ, Lagasse LD, Leuchter RS, Karlan BY (1999) Survival impact of surgical cytoreduction in stage IV epithelial ovarian cancer. Gynecol Oncol 72:278–287. doi:10.1006/gyno.1998.5145

    Article  CAS  PubMed  Google Scholar 

  41. Chang SJ, Bristow RE (2012) Evolution of surgical treatment paradigms for advanced-stage ovarian cancer: redefining ‘optimal’ residual disease. Gynecol Oncol 125:483–492. doi:10.1016/j.ygyno.2012.02.024

    Article  PubMed  Google Scholar 

  42. Jelovac D, Armstrong DK (2011) Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin 61:183–203. doi:10.3322/caac.20113

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nakayamada S, Takahashi H, Kanno Y, O’Shea JJ (2012) Helper T cell diversity and plasticity. Curr Opin Immunol 24:297–302. doi:10.1016/j.coi.2012.01.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149. doi:10.1182/blood-2009-03-208249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Song H, Ramus SJ, Tyrer J, Bolton KL, Gentry-Maharaj A, Wozniak E et al (2009) A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet 41:996–1000. doi:10.1038/ng.424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Bolton KL, Tyrer J, Song H, Ramus SJ, Notaridou M, Jones C et al (2010) Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet 42:880–884. doi:10.1038/ng.666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Goode EL, Chenevix-Trench G, Song H, Ramus SJ, Notaridou M, Lawrenson K et al (2010) A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat Genet 42:874–879. doi:10.1038/ng.668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K et al (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45:362–370, 70e1–2. doi:10.1038/ng.2564

  49. Permuth-Wey J, Lawrenson K, Shen HC, Velkova A, Tyrer JP, Chen Z et al (2013) Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nat Commun 4:1627. doi:10.1038/ncomms2613

  50. Yang AS, Lattime EC (2003) Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63:2150–2157

    CAS  PubMed  Google Scholar 

  51. Groux H, Bigler M, de Vries JE, Roncarolo MG (1998) Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol 160:3188–3193

    CAS  PubMed  Google Scholar 

  52. Jarnicki AG, Lysaght J, Todryk S, Mills KH (2006) Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 177:896–904

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by US National Institute of Health Grants (P50-CA136393 [Mayo Clinic SPORE in ovarian cancer], R01-CA122443 and, P30-CA15083) and the Fred C. and Katherine B. Andersen Foundation. The authors would like to acknowledge the help and support of Duane Deal, the Mayo Clinic Cancer Center Flow Cytometry/Optical Morphology Shared Resource, and the Ovarian Cancer Association Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keith L. Knutson or Ellen L. Goode.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knutson, K.L., Maurer, M.J., Preston, C.C. et al. Regulatory T cells, inherited variation, and clinical outcome in epithelial ovarian cancer. Cancer Immunol Immunother 64, 1495–1504 (2015). https://doi.org/10.1007/s00262-015-1753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1753-x

Keywords

Navigation