Skip to main content
Log in

Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Hashimoto thyroiditis (HT) is the most frequent thyroid autoimmune disease, while papillary thyroid cancer (PTC) is one of the most common endocrine malignancies. A few patients with HT also develop PTC. The aim of this study was to analyze cytokine profiles in patients with PTC accompanied with autoimmune HT in comparison with those in patients with PTC alone or HT alone and healthy subjects. Cytokine levels were determined in supernatants obtained from phytohemagglutinin (PHA)-stimulated whole blood cultures in vitro. The concentrations of selected cytokines: Th1—interferon gamma (IFN-γ); Th2—interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 10 (IL-10) and interleukin 13 (IL-13); Th9—interleukin 9 (IL-9); and Th17—interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for human Th1/Th2/Th9/Th17/Th22. We found that PTC patients with HT produced significantly higher concentrations of IL-4, IL-6, IL-9, IL-13 and IFN-γ than PTC patients without HT. In conclusion, autoimmune HT affects the cytokine profile of patients with PTC by stimulating secretion of Th1/Th2/Th9 types of cytokines. Th1/Th2 cytokine ratios in PTC patients with associated autoimmune HT indicate a marked shift toward Th2 immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Abs:

Antibodies

HT:

Hashimoto thyroiditis

IFN-γ:

Interferon gamma

IL:

Interleukin

PHA:

Phytohemagglutinin

PTC:

Papillary thyroid cancer

Tg:

Thyroglobulin

Th1:

T-helper-1

Th17:

T-helper-17

Th2:

T-helper-2

Th9:

T-helper-9

TPO:

Thyroperoxidase

References

  1. Dayan CM, Daniels GH (1996) Chronic autoimmune thyroiditis. N Engl J Med 335:99–107

    Article  CAS  PubMed  Google Scholar 

  2. Mazziotti G, Sorvillo F, Naclerio C et al (2003) Type-1 response in peripheral CD4+ and CD8+ T cells from patients with Hashimoto’s thyroiditis. Eur J Endocrinol 148:383–388

    Article  CAS  PubMed  Google Scholar 

  3. Figueroa-Vega N, Alfonso-Pérez M, Benedicto I et al (2010) Increased circulating proinflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2010(95):953–962

    Article  Google Scholar 

  4. Skapenko A, Niedobitek GU, Kalden JR et al (2004) Generation and regulation of human Th1-biased immune responses in vivo: a critical role for IL-4 and IL-10. J Immunol 172:6427–6434

    Article  CAS  PubMed  Google Scholar 

  5. Marazuela M, García-López MA, Figueroa-Vega N et al (2006) Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab 91:3639–3646

    Article  CAS  PubMed  Google Scholar 

  6. Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295:2164–2167

    Article  CAS  PubMed  Google Scholar 

  7. Riesco-Eizaguirre G, Santisteban P (2007) New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr Relat Cancer 14:957–977

    Article  CAS  PubMed  Google Scholar 

  8. Ozgen AG, Karadeniz M, Erdogan M et al (2009) The (-174) G/C polymorphism in the interleukin-6 gene is associated with risk of papillary thyroid carcinoma in Turkish patients. J Endocrinol Invest 32:491–494

    Article  CAS  PubMed  Google Scholar 

  9. Cunha LL, Aj Tincani, Assumpcao LV et al (2011) Interleukin-10 but not interleukin-18 may be associated with the immune response against well-differentiated thyroid cancer. Clinics (Sao Paulo) 66:1203–1208

    Article  Google Scholar 

  10. Simonovic SZ, Mihaljevic O, Majstorovic I et al (2015) Cytokine production in peripheral blood cells of patients with differentiated thyroid cancer: elevated Th2/Th9 production before and reduced Th2 cytokine production after radioactive iodine therapy. Cancer Immunol Immunother 64:75–82

    Article  CAS  PubMed  Google Scholar 

  11. Stassi G, Todaro M, Zerilli M et al (2003) Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Res 63:6784–6790

    CAS  PubMed  Google Scholar 

  12. Jankovic B, Le KT, Hershman JM (2013) Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab 98:474–482

    Article  CAS  PubMed  Google Scholar 

  13. Weber F (2014) Lymphocytes and thyroid cancer: more to it than meets the eye? Endocr Relat Cancer 21:C1–C5

    Article  CAS  PubMed  Google Scholar 

  14. Cunha LL, Marcello MA, Ward LS (2014) The role of the inflammatory microenvironment in thyroid carcinogenesis. Endocr Relat Cancer 21:R85–R103

    Article  CAS  PubMed  Google Scholar 

  15. Kashima K, Yokoyama S, Noguchi S et al (1998) Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma. Thyroid 8:197–202

    Article  CAS  PubMed  Google Scholar 

  16. Singh B, Shaha AR, Trivedi H et al (1999) Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact of presentation, management and outcome. Surgery 126:1070–1077

    Article  CAS  PubMed  Google Scholar 

  17. Kim EY, Kim WG, Kim WB et al (2009) Coexistence of chronic lymphocytic thyroiditis is associated with lower recurrence rates in patients with papillary thyroid carcinoma. Clin Endocrinol (Oxf) 71:581–586

    Article  Google Scholar 

  18. Lee JH, Kim Y, Choi JW et al (2013) The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: a meta-analysis. Eur J Endocrinol 168:343–349

    Article  CAS  PubMed  Google Scholar 

  19. Kebebew E, Treseler P, Ituarte P, Clark O (2001) Coexisting chronic lymphocytic thyroiditis and papillary thyroid cancer revisited. World J Surg 25:632–637

    Article  CAS  PubMed  Google Scholar 

  20. Cunha LL, Ward LS (2012) Concurrent lymphocytic thyroiditis is associated to less aggressive papillary thyroid carcinomas. Eur Arch Otorhinolaryngol 269:699–700

    Article  PubMed  Google Scholar 

  21. Schuetz M, Duan H, Wahl K et al (2006) T Lymphocyte cytokine production patterns in Hashimoto patients with elevated calcitonin levels and their relationship to tumor initiation. Anticancer Res 26:4591–4596

    CAS  PubMed  Google Scholar 

  22. Nikiforov YE (2012) Thyroid tumors: classification, staging, and general considerations. In: Nikiforov YE, Biddinger PW, Thompson LDR (eds) Diagnostic pathology and molecular genetics of the thyroid, 2nd edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 108–119

    Google Scholar 

  23. Budhu A, Wang XW (2006) The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 80:1197–1213

    Article  CAS  PubMed  Google Scholar 

  24. Bodelon C, Polley MY, Kemp TJ et al (2013) Circulating levels of immune and inflammatory markers and long versus short survival in early-stage lung cancer. Ann Oncol 24:2073–2079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ellyard JI, Simson L, Parish CR (2007) Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens 70:1–11

    Article  CAS  PubMed  Google Scholar 

  26. Mattes J, Hulett M, Xie W et al (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197:387–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Roy M, Chen H, Sippel RS (2013) Current understanding and management of medullary thyroid cancer. Oncologist 18:1093–1100

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schroder K, Hertzog PJ, Ravasi T et al (2004) Interferon-Υ: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189

    Article  CAS  PubMed  Google Scholar 

  29. Del Prete GF, Tiri A, Mariotti S et al (1987) Enhanced production of gamma-interferon by thyroid-derived T cell clones from patients with Hashimoto’s thyroiditis. Clin Exp Immunol 69:323–331

    PubMed Central  PubMed  Google Scholar 

  30. Zaidi MR, Merlino G (2011) The two faces of interferon-Υ in cancer. Clin Cancer Res 17:6118–6124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Miller CH, Maher SG, Young HA (2009) Clinical use of interferon-gamma. Ann N Y Acad Sci 1182:69–79

    Article  CAS  PubMed  Google Scholar 

  32. Hossain MS, Bhimani C, Zhengjia C et al (2011) Profiling counter-regulatory and cytotoxic immune pathways with cellular biomarkers in thyroid cancer patients. [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2–6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 71(8 Suppl):Abstract nr 5525. doi:10.1158/1538-7445.AM2011-5525

  33. Kang S, Tanaka T, Kishimoto T (2015) Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol 27:21–29

    Article  CAS  PubMed  Google Scholar 

  34. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40:1830–1835

    Article  CAS  PubMed  Google Scholar 

  35. Baki M, Akman FE, Vural P et al (2012) The combination of interleukin-10 -1082 and tumor necrosis factor α -308 or interleukin-6 -174 genes polymorphisms suggests an association with susceptibility to Hashimoto’s thyroiditis. Int Immunopharmacol 12:543–546

    Article  CAS  PubMed  Google Scholar 

  36. Weetman AP, Bright-Thomas R, Freeman M (1990) Regulation of interleukin-6 release by human thyrocytes. J Endocrinol 127:357–361

    Article  CAS  PubMed  Google Scholar 

  37. Ajjan RA, Watson PF, Weetman AP (1996) Cytokines and thyroid function. Adv Neuroimmunol 6:359–386

    Article  CAS  PubMed  Google Scholar 

  38. Ruggeri RM, Sciacchitano S, Vitale A et al (2009) Serum hepatocyte growth factor (HGF) is increased in Hashimoto’s thyroiditis whether or not it is associated with nodular goiter as compared with healthy non-goitrous individuals. J Endocrinol Invest 32:465–469

    Article  CAS  PubMed  Google Scholar 

  39. Sieminska L, Wojciechowska C, Kos-Kudla B et al (2010) Serum concentrations of leptin, adiponectin, and interleukin-6 in postmenopausal women with Hashimoto’s thyroiditis. Endokrynol Pol 61:112–116

    CAS  PubMed  Google Scholar 

  40. Sehgal PB (1990) Interleukin 6 in infection and cancer. Proc Soc Exp Biol Med 195:183–191

    Article  CAS  PubMed  Google Scholar 

  41. Kura Y, De Velasco MA, Kobayashi Y, et al (2013) Interleukin-6 (IL-6) as a therapeutic target in prostate cancer. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6–10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 73(8 Suppl):Abstract nr 1226. doi:10.1158/1538-7445.AM2013-1226

  42. Zhang Y, Yan W, Collins MA et al (2013) Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res 73:6359–6374

    Article  CAS  PubMed  Google Scholar 

  43. Ujiie H, Tomida M, Akiyama H et al (2012) Serum hepatocyte growth factor and interleukin-6 are effective prognostic markers for non-small cell lung cancer. Anticancer Res 32:3251–3258

    CAS  PubMed  Google Scholar 

  44. Huang BY, Hseuh C, Chao TC et al (2011) Well-differentiated thyroid carcinoma with concomitant Hashimoto’s thyroiditis present with less aggressive clinical stage and low recurrence. Endocr Pathol 22:144–149

    Article  PubMed  Google Scholar 

  45. Ng TH, Britton GJ, Hill EV et al (2013) Regulation of adaptive immunity; the role of interleukin-10. Front Immunol 4:129–140

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Smilek DE, Ehlers MR, Nepom GT (2014) Restoring the balance: immunotherapeutic combinations for autoimmune disease. Dis Model Mech 7:503–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. de Waal-Malefyt R, Yssel H, de Vries JE (1993) Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol 150:4754–4765

    PubMed  Google Scholar 

  48. Cyktor JC, Turner J (2011) Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immunol 79:2964–2973

    Article  CAS  Google Scholar 

  49. Franks AL, Slansky JE (2012) Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res 32:1119–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Luheshi N, Davies GC, Poon E et al (2013) Th1 and Th2 cytokines determine how CD40 activation changes human macrophage function in vitro. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6–10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 73(8 Suppl):Abstract nr 1542. doi:10.1158/1538-7445.AM2013-1542

  51. Becker JC, Andersen MH, Schrama D et al (2013) Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother 62:1137–1148

    Article  CAS  PubMed  Google Scholar 

  52. Atsumi T, Singh R, Sabharwal L et al (2014) Inflammation amplifier, a new paradigm in cancer biology. Cancer Res 74:8–14

    Article  CAS  PubMed  Google Scholar 

  53. Murray JI, West NR, Murphy LC et al (2014) Intratumoral inflammation and endocrine resistance in breast cancer. Endocr Relat Cancer 22:R51–R67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers whose remarks and suggestions have highly improved the final version of our paper. The study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. III41010 and ON175069) and Faculty of Medical Sciences University of Kragujevac, Serbia (JP 06-12).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snezana Zivancevic-Simonovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zivancevic-Simonovic, S., Mihaljevic, O., Majstorovic, I. et al. Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis. Cancer Immunol Immunother 64, 1011–1019 (2015). https://doi.org/10.1007/s00262-015-1705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1705-5

Keywords

Navigation