Cancer Immunology, Immunotherapy

, Volume 64, Issue 7, pp 831–842 | Cite as

Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions

  • Yannick Willemen
  • Johan M. J. Van den Bergh
  • Eva Lion
  • Sébastien Anguille
  • Vicky A. E. Roelandts
  • Heleen H. Van Acker
  • Steven D. I. Heynderickx
  • Barbara M. H. Stein
  • Marc Peeters
  • Carl G. Figdor
  • Viggo F. I. Van Tendeloo
  • I. Jolanda de Vries
  • Gosse J. Adema
  • Zwi N. Berneman
  • Evelien L. J. Smits
Original Article

Abstract

Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.

Keywords

Dendritic cells Cytotoxic T cells Natural killer cells Interferon-alpha mRNA electroporation Cancer immunotherapy 

Abbreviations

7-AAD

7-Amino actinomycin D

ANOVA

Analysis of variance

CFSE

Carboxyfluorescein succinimidyl ester

DC

Dendritic cell

EP

Electroporated

FBS

Fetal bovine serum

HLA

Human leukocyte antigen

IFN

Interferon

IL

Interleukin

IMDM

Iscove’s modified Dulbecco’s medium

mAb

Monoclonal antibody

MLR

Mixed lymphocyte reaction

NK

Natural killer

PBMC

Peripheral blood mononuclear cells

PHA

Phytohemagglutinin

PI

Propidium iodide

RPMI

Roswell Park Memorial Institute

WT1

Wilms’ tumor 1

Supplementary material

262_2015_1688_MOESM1_ESM.pdf (679 kb)
Supplementary material 1 (PDF 679 kb)

References

  1. 1.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277. doi:10.1038/nrc3258 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Van Tendeloo VF, Van de Velde A, Van Driessche A et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 107:13824–13829. doi:10.1073/pnas.1008051107 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915. doi:10.1038/nm1100 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15:e257–e267. doi:10.1016/s1470-2045(13)70585-0 PubMedCrossRefGoogle Scholar
  5. 5.
    Anguille S, Willemen Y, Lion E, Smits EL, Berneman ZN (2012) Dendritic cell vaccination in acute myeloid leukemia. Cytotherapy 14:647–656. doi:10.3109/14653249.2012.693744 PubMedCrossRefGoogle Scholar
  6. 6.
    Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL (2011) Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia 25:739–748. doi:10.1038/leu.2010.324 PubMedCrossRefGoogle Scholar
  7. 7.
    Kirkwood J (2002) Cancer immunotherapy: the interferon-alpha experience. Semin Oncol 29:18–26PubMedCrossRefGoogle Scholar
  8. 8.
    Atzpodien J, Kirchner H, Rebmann U et al (2006) Interleukin-2/interferon-alpha2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma: results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer 95:463–469. doi:10.1038/sj.bjc.6603271 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281. doi:10.1056/NEJMoa066838 PubMedCrossRefGoogle Scholar
  10. 10.
    Diamond MS, Kinder M, Matsushita H et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208:1989–2003. doi:10.1084/jem.20101158 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med 208:2005–2016. doi:10.1084/jem.20101159 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Arico E, Belardelli F (2012) Interferon-alpha as antiviral and antitumor vaccine adjuvants: mechanisms of action and response signature. J Interferon Cytokine Res 32:235–247. doi:10.1089/jir.2011.0077 PubMedCrossRefGoogle Scholar
  13. 13.
    Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S (2012) Immunotherapy of cancer in 2012. CA Cancer J Clin 62:309–335. doi:10.3322/caac.20132 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17:2619–2627. doi:10.1158/1078-0432.ccr-10-1114 PubMedCrossRefGoogle Scholar
  15. 15.
    Smits EL, Lee C, Hardwick N, Brooks S, Van Tendeloo VF, Orchard K, Guinn BA (2011) Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunol Immunother 60:757–769. doi:10.1007/s00262-011-1022-6 PubMedCrossRefGoogle Scholar
  16. 16.
    Lion E, Smits EL, Berneman ZN, Van Tendeloo VF (2012) NK cells: key to success of DC-based cancer vaccines? Oncologist 17:1256–1270. doi:10.1634/theoncologist.2011-0122 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tel J, Aarntzen EH, Baba T et al (2013) Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 73:1063–1075. doi:10.1158/0008-5472.can-12-2583 PubMedCrossRefGoogle Scholar
  18. 18.
    Okada H, Tsugawa T, Sato H et al (2004) Delivery of interferon-alpha transfected dendritic cells into central nervous system tumors enhances the antitumor efficacy of peripheral peptide-based vaccines. Cancer Res 64:5830–5838. doi:10.1158/0008-5472.can-04-0130 PubMedCrossRefGoogle Scholar
  19. 19.
    Kuwashima N, Nishimura F, Eguchi J et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175:2730–2740PubMedCrossRefGoogle Scholar
  20. 20.
    Huang C, Ramakrishnan R, Trkulja M, Ren X, Gabrilovich DI (2012) Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol Immunother 61:573–579. doi:10.1007/s00262-011-1198-9 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56PubMedCrossRefGoogle Scholar
  22. 22.
    Van Tendeloo VF, Ponsaerts P, Berneman ZN (2007) mRNA-based gene transfer as a tool for gene and cell therapy. Curr Opin Mol Ther 9:423–431PubMedGoogle Scholar
  23. 23.
    Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF (2009) Dendritic cell-based cancer gene therapy. Hum Gene Ther 20:1106–1118. doi:10.1089/hum.2009.145 PubMedCrossRefGoogle Scholar
  24. 24.
    Britten CM, Janetzki S, Butterfield LH et al (2012) T cell assays and MIATA: the essential minimum for maximum impact. Immunity 37:1–2. doi:10.1016/j.immuni.2012.07.010 PubMedCrossRefGoogle Scholar
  25. 25.
    Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Tureci O, Sahin U (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017. doi:10.1182/blood-2006-04-015024 PubMedCrossRefGoogle Scholar
  26. 26.
    Benteyn D, Anguille S, Van Lint S et al (2013) Design of an optimized Wilms’ Tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo. Mol Ther Nucleic Acids 2:e134. doi:10.1038/mtna.2013.54 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Van Driessche A, Van de Velde AL, Nijs G, Braeckman T, Stein B, De Vries JM, Berneman ZN, Van Tendeloo VF (2009) Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11:653–668. doi:10.1080/14653240902960411 PubMedCrossRefGoogle Scholar
  28. 28.
    Lion E, Anguille S, Berneman ZN, Smits EL, Van Tendeloo VF (2011) Poly(I:C) enhances the susceptibility of leukemic cells to NK cell cytotoxicity and phagocytosis by DC. PLoS ONE 6:e20952. doi:10.1371/journal.pone.0020952 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Rubinstein M, Levy WP, Moschera JA, Lai CY, Hershberg RD, Bartlett RT, Pestka S (1981) Human leukocyte interferon: isolation and characterization of several molecular forms. Arch Biochem Biophys 210:307–318PubMedCrossRefGoogle Scholar
  30. 30.
    Hobbs DS, Pestka S (1982) Purification and characterization of interferons from a continuous myeloblastic cell line. J Biol Chem 257:4071–4076PubMedGoogle Scholar
  31. 31.
    Anguille S, Lion E, Tel J, de Vries IJ, Coudere K, Fromm PD, Van Tendeloo VF, Smits EL, Berneman ZN (2012) Interleukin-15-induced CD56(+) myeloid dendritic cells combine potent tumor antigen presentation with direct tumoricidal potential. PLoS ONE 7:e51851. doi:10.1371/journal.pone.0051851 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Bonehill A, Tuyaerts S, Van Nuffel AM, Heirman C, Bos TJ, Fostier K, Neyns B, Thielemans K (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180. doi:10.1038/mt.2008.77 PubMedCrossRefGoogle Scholar
  33. 33.
    Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J, Cebon J (1998) Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 161:1947–1953PubMedGoogle Scholar
  34. 34.
    Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191:1777–1788PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, Tough DF (2002) Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99:3263–3271PubMedCrossRefGoogle Scholar
  36. 36.
    Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA (2002) Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297:2063–2066. doi:10.1126/science.1074900 PubMedCrossRefGoogle Scholar
  37. 37.
    Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol. 174:4465–4469PubMedCrossRefGoogle Scholar
  38. 38.
    Spadaro F, Lapenta C, Donati S, Abalsamo L, Barnaba V, Belardelli F, Santini SM, Ferrantini M (2012) IFN-alpha enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing. Blood 119:1407–1417. doi:10.1182/blood-2011-06-363564 PubMedCrossRefGoogle Scholar
  39. 39.
    Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA (2002) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169:4279–4287PubMedCrossRefGoogle Scholar
  40. 40.
    Mailliard RB, Son YI, Redlinger R, Coates PT, Giermasz A, Morel PA, Storkus WJ, Kalinski P (2003) Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 171:2366–2373PubMedCrossRefGoogle Scholar
  41. 41.
    Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, Hertzog P, Smyth MJ (2007) Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol 178:7540–7549PubMedCrossRefGoogle Scholar
  42. 42.
    Lion E, Smits EL, Berneman ZN, Van Tendeloo VF (2009) Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-gamma secretion by human NK cells. Leuk Res 33:539–546. doi:10.1016/j.leukres.2008.08.020 PubMedCrossRefGoogle Scholar
  43. 43.
    Boudreau JE, Stephenson KB, Wang F et al (2011) IL-15 and type I interferon are required for activation of tumoricidal NK cells by virus-infected dendritic cells. Cancer Res 71:2497–2506. doi:10.1158/0008-5472.can-10-3025 PubMedCrossRefGoogle Scholar
  44. 44.
    Jinushi M, Takehara T, Kanto T et al (2003) Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol 170:1249–1256PubMedCrossRefGoogle Scholar
  45. 45.
    Elpek KG, Rubinstein MP, Bellemare-Pelletier A, Goldrath AW, Turley SJ (2010) Mature natural killer cells with phenotypic and functional alterations accumulate upon sustained stimulation with IL-15/IL-15Ralpha complexes. Proc Natl Acad Sci U S A 107:21647–21652. doi:10.1073/pnas.1012128107 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Salguero G, Daenthanasanmak A, Munz C et al (2014) Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation. J Immunol 192:4636–4647. doi:10.4049/jimmunol.1302887 PubMedCrossRefGoogle Scholar
  47. 47.
    Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E (2005) Natural-killer cells and dendritic cells: “l’union fait la force”. Blood 106:2252–2258. doi:10.1182/blood-2005-03-1154 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yannick Willemen
    • 1
  • Johan M. J. Van den Bergh
    • 1
  • Eva Lion
    • 1
    • 2
  • Sébastien Anguille
    • 1
  • Vicky A. E. Roelandts
    • 1
  • Heleen H. Van Acker
    • 1
  • Steven D. I. Heynderickx
    • 1
    • 2
  • Barbara M. H. Stein
    • 2
  • Marc Peeters
    • 3
  • Carl G. Figdor
    • 4
  • Viggo F. I. Van Tendeloo
    • 1
  • I. Jolanda de Vries
    • 4
    • 5
  • Gosse J. Adema
    • 4
  • Zwi N. Berneman
    • 1
    • 2
  • Evelien L. J. Smits
    • 1
    • 2
    • 3
  1. 1.Laboratory of Experimental Hematology, Vaccine and Infectious Disease InstituteUniversity of AntwerpAntwerpBelgium
  2. 2.Center for Cell Therapy and Regenerative MedicineAntwerp University HospitalEdegemBelgium
  3. 3.Center for Oncological ResearchUniversity of AntwerpAntwerpBelgium
  4. 4.Department of Tumor Immunology, Nijmegen Centre for Molecular Life SciencesRadboud University NijmegenNijmegenThe Netherlands
  5. 5.Department of Medical OncologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations