Skip to main content

Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma


The disialoganglioside GD2 is a well-established target antigen for passive immunotherapy in neuroblastoma (NB). Despite the recent success of passive immunotherapy with the anti-GD2 antibody ch14.18 and cytokines, treatment of high-risk NB remains challenging. We expanded the approach of GD2-specific, antibody-based immunotherapy to an application of a GD2-specific natural killer (NK) cell line, NK-92-scFv(ch14.18)-zeta. NK-92-scFv(ch14.18)-zeta is genetically engineered to express a GD2-specific chimeric antigen receptor generated from ch14.18. Here, we show that chimeric receptor expression enables NK-92-scFv(ch14.18)-zeta to effectively lyse GD2+ NB cells also including partially or multidrug-resistant lines. Our data suggest that recognition of GD2 by the chimeric receptor is the primary mechanism involved in NK-92-scFv(ch14.18)-zeta-mediated lysis and is independent of activating NK cell receptor/ligand interactions. Furthermore, we demonstrate that NK-92-scFv(ch14.18)-zeta is able to mediate a significant anti-tumor response in vivo in a drug-resistant GD2+ NB xenograft mouse model. NK-92-scFv(ch14.18)-zeta is an NB-specific NK cell line that has potential for future clinical development due to its high stability and activity toward GD2+ NB cell lines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Antibody-dependent cellular cytotoxicity


Analysis of variance


Anti-idiotypic antibody


Bovine serum albumin


Chimeric antigen receptor


Cluster of differentiation


Chinese hamster ovary


Children’s Oncology Group




Ethylenediaminetetraacetic acid


Enzyme-linked immunosorbent assay

E/T ratio:

Effector cell-to-target cell ratio


Fluorescence-activated cell sorting


Fas ligand


Fetal bovine serum


Fc-gamma receptor


Glucosylceramide synthase






Granulocyte–macrophage colony-stimulating factor


Good manufacturing practices


Human leukocyte antigen




Immunoglobulin G




Iscove’s modified Dulbecco’s medium


International unit


Killer cell immunoglobulin-like receptor


Lymphokine-activated killer cells


Mean fluorescence intensity


Major histocompatibility complex


MHC class I-related protein A




Natural killer


NOD.Cg-Prkdc scid Il2rg tm1WjI/SzJ


Phosphate-buffered saline




Propidium iodide






Roswell Park Memorial Institute


Single-chain fragment variable


Sodium dodecyl sulfate


Short tandem repeat


Tumor necrosis factor


TNF-related apoptosis-inducing ligand


TNF-related apoptosis-inducing ligand receptor


  1. 1.

    Westermann F, Schwab M (2002) Genetic parameters of neuroblastomas. Cancer Lett 184:127–147

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    van Noesel MM, Versteeg R (2004) Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene 325:1–15

    Article  PubMed  Google Scholar 

  4. 4.

    Keshelava N, Seeger RC, Groshen S, Reynolds CP (1998) Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy. Cancer Res 58:5396–5405

    CAS  PubMed  Google Scholar 

  5. 5.

    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, Shimada H, Grupp SA, Seeger R, Reynolds CP, Buxton A, Reisfeld RA, Gillies SD, Cohn SL, Maris JM, Sondel PM (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. 6.

    Mujoo K, Cheresh DA, Yang HM, Reisfeld RA (1987) Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res 47:1098–1104

    CAS  PubMed  Google Scholar 

  7. 7.

    Yang RK, Sondel PM (2010) Anti-GD2 strategy in the treatment of neuroblastoma. Drugs Future 35:665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. 8.

    Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15:251–262

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Schmitz I, Kirchhoff S, Krammer PH (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32:1123–1136

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97:2731–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. 13.

    Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8:652–658

    CAS  PubMed  Google Scholar 

  14. 14.

    Klingemann HG, Wong E, Maki G (1996) A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant 2:68–75

    CAS  PubMed  Google Scholar 

  15. 15.

    Tam YK, Martinson JA, Doligosa K, Klingemann HG (2003) Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5:259–272

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, O’Reilly RJ (1998) Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 4(11):2859–2868

    CAS  PubMed  Google Scholar 

  17. 17.

    Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H (2008) Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10(6):625–632

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15(12):1563–1570

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Uherek C, Groner B, Wels W (2001) Chimeric antigen receptors for the retargeting of cytotoxic effector cells. J Hematother Stem Cell Res 10:523–534

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schonfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS (2012) NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 16(3):569–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP (2001) Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 61(16):6185–6193

    CAS  PubMed  Google Scholar 

  24. 24.

    Keshelava N, Davicioni E, Wan Z, Ji L, Sposto R, Triche TJ, Reynolds CP (2007) Histone deacetylase 1 gene expression and sensitization of multidrug-resistant neuroblastoma cell lines to cytotoxic agents by depsipeptide. J Natl Cancer Inst 99(14):1107–1119

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W (2002) Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100(4):1265–1273

    CAS  PubMed  Google Scholar 

  26. 26.

    Lode HN, Schmidt M, Seidel D, Huebener N, Brackrock D, Bleeke M, Reker D, Brandt S, Mueller HP, Helm C, Siebert N (2013) Vaccination with anti-idiotype antibody ganglidiomab mediates a GD(2)-specific anti-neuroblastoma immune response. Cancer Immunol Immunother 62(6):999–1010

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Raffaghello L, Prigione I, Airoldi I, Camoriano M, Morandi F, Bocca P, Gambini C, Ferrone S, Pistoia V (2005) Mechanisms of immune evasion of human neuroblastoma. Cancer Lett 228(1–2):155–161

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53:176–186

    Article  PubMed  Google Scholar 

  30. 30.

    Suck G (2006) Novel approaches using natural killer cells in cancer therapy. Semin Cancer Biol 16:412–418

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Sutlu T, Alici E (2009) Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med 266:154–181

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A (2005) Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 17:211–217

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT (2009) Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 21:525–530

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Voskens CJ, Watanabe R, Rollins S, Campana D, Hasumi K, Mann DL (2010) Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity. J Exp Clin Cancer Res 29:134

    Article  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Kloess S, Huenecke S, Piechulek D, Esser R, Koch J, Brehm C, Soerensen J, Gardlowski T, Brinkmann A, Bader P, Passweg J, Klingebiel T, Schwabe D, Koehl U (2010) IL-2-activated haploidentical NK cells restore NKG2D-mediated NK-cell cytotoxicity in neuroblastoma patients by scavenging of plasma MICA. Eur J Immunol 40(11):3255–3267

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M, Rossig C (2009) 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 15(15):4857–4866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. 37.

    Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. 38.

    Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJ, Lee DA, Seeger RC (2013) Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 19(8):2132–2143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. 39.

    Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69(9):4010–4017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Benjamin JE, Gill S, Negrin RS (2010) Biology and clinical effects of natural killer cells in allogeneic transplantation. Curr Opin Oncol 22(2):130–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. 41.

    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Campbell KS, Hasegawa J (2013) Natural killer cell biology: an update and future directions. J Allergy Clin Immunol 132(3):536–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. 43.

    Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. 44.

    Tonn T, Becker S, Esser R, Schwabe D, Seifried E (2001) Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 10:535–544

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Muller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS (2008) Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 57(3):411–423

    Article  PubMed  Google Scholar 

Download references


We thank Dr. Barry J. Maurer for providing the PPPP; Tito Woodburn, Heather Kimmons, Heather Davidson, Malkanthi Mudannayake and Christin Eger for excellent technical assistance; Merck Serono and Merck KGaA for providing scFv(ch14.18) constructs; and the SIOPEN group for providing ch14.18/CHO. This work was financially supported by the German Cancer Foundation (Deutsche Krebshilfe, Holger N. Lode) and the South Plains Foundation (Nicole Huebener). Further support was provided by the University Medicine of Greifswald (Holger N. Lode), the Hector Stiftung (Nicole Huebener, Nikolai Siebert, Holger N. Lode), the Kind-Philipp-Stiftung für Leukämieforschung (Diana Seidel), Apeiron Biologics (Holger N. Lode) and National Cancer Institute grant CA82830 (C. Patrick Reynolds).

Conflict of interest

The authors have no conflict of interest to declare.

Ethical standard

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Author information



Corresponding author

Correspondence to Holger N. Lode.

Additional information

Nicole Huebener and Holger N. Lode have share senior authorship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seidel, D., Shibina, A., Siebert, N. et al. Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma. Cancer Immunol Immunother 64, 621–634 (2015).

Download citation


  • Neuroblastoma GD2
  • Chimeric antigen receptor
  • Natural killer cell
  • Single-chain antibody