Cancer Immunology, Immunotherapy

, Volume 64, Issue 4, pp 419–427 | Cite as

Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma

  • Elias J. Sayour
  • Pat McLendon
  • Roger McLendon
  • Gabriel De Leon
  • Renee Reynolds
  • Jesse Kresak
  • John H. Sampson
  • Duane A. MitchellEmail author
Original Article


Glioblastoma multiforme (GBM) is an aggressive malignancy associated with profound host immunosuppression mediated in part by FoxP3 expressing regulatory CD4+ T lymphocytes (Tregs) that down-regulate anti-tumor immunity. In order to assess whether FoxP3 was an independent driver differentially expressed in primary versus recurrent GBMs, we stained resected primary and recurrent GBM tumors for CD3, CD4, CD8 and FoxP3 expression using standard immunohistochemistry. Slides were scanned with a high-resolution scanner (ScanScope CS; Aperio), and image analysis software (Aperio ScanScope) was used to enumerate lymphocyte subpopulations allowing for high-throughput analysis and bypassing manual selection bias. As shown in previous studies, enumeration of individual lymphocyte populations did not correlate with clinical outcomes in patients with GBM. However, the CD4+ to regulatory FoxP3+ T cell ratio was diminished in recurrent disease, and increased CD3 and CD8+ to regulatory T cell ratios showed a positive correlation with survival outcomes in primary GBM. These results suggest that while absolute numbers of tumor infiltrating lymphocytes may not be informative for predicting clinical outcomes in patients with GBM, the effective balance of CD3, CD4 and CD8+ T cells to immunosuppressive FoxP3+ regulatory cells may influence clinical outcomes in this patient population.


Tumor infiltrating lymphocytes Regulatory T cells (Tregs) Primary and recurrent GBM Immunotherapy 



Glioblastoma multiforme


Hematoxylin and eosin




Peripheral blood mononuclear cells


Positive pixel count v9


Regulatory T lymphocytes


Tumor infiltrating lymphocytes



This work was supported by the National Institutes of Health (NIH)/National Cancer Institute/National Institute of Neurological Disorders and Stroke Grants [5R01-NS067037 (to D.A. Mitchell), 5R01-CA134844 (to D.A. Mitchell), 5P50-CA108786 (to J.H. Sampson/Bigner)] and a Clinical and Translational Science Awards Grant UL1RR024128 from the National Center for Research Resources, a component of the NIH and NIH Roadmap for Medical Research. Additional support was provided by Accelerate Brain Cancer Cure (ABC2), National Brain Tumor Society, the American Brain Tumor Association, and the Pediatric Brain Tumor Foundation of the United States.

Conflict of interest

The authors declare that they have no conflict of interest with the research presented in this paper.

Supplementary material

262_2014_1651_MOESM1_ESM.pdf (186 kb)
Supplementary material 1 (PDF 185 kb)


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 CrossRefPubMedGoogle Scholar
  2. 2.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, Investigators IS (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi: 10.1056/NEJMoa1001294 CrossRefPubMedGoogle Scholar
  3. 3.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi: 10.1056/NEJMoa1003466 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SL, Kuk D, Panageas KS, Ritter G, Sznol M, Halaban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 108(40):16723–16728. doi: 10.1073/pnas.1110814108 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Lee ST, Jiang YF, Park KU, Woo AF, Neelapu SS (2007) BiovaxID: a personalized therapeutic cancer vaccine for non-Hodgkin’s lymphoma. Expert Opin Biol Ther 7(1):113–122. doi: 10.1517/14712598.7.1.113 CrossRefPubMedGoogle Scholar
  6. 6.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, Gilbert MR, Herndon JE 2nd, McLendon RE, Mitchell DA, Reardon DA, Sawaya R, Schmittling RJ, Shi W, Vredenburgh JJ, Bigner DD (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28(31):4722–4729. doi: 10.1200/JCO.2010.28.6963 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21. doi: 10.1038/83713 CrossRefPubMedGoogle Scholar
  8. 8.
    Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73. doi: 10.1038/83784 CrossRefPubMedGoogle Scholar
  9. 9.
    Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337–342. doi: 10.1038/ni909 CrossRefPubMedGoogle Scholar
  10. 10.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336. doi: 10.1038/ni904 CrossRefPubMedGoogle Scholar
  11. 11.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi: 10.1126/science.1079490 CrossRefPubMedGoogle Scholar
  12. 12.
    Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25− T cells. J Clin Invest 112(9):1437–1443. doi: 10.1172/JCI19441 CrossRefPubMedGoogle Scholar
  13. 13.
    Learn CA, Fecci PE, Schmittling RJ, Xie W, Karikari I, Mitchell DA, Archer GE, Wei Z, Dressman H, Sampson JH (2006) Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers. Clin Cancer Res 12(24):7306–7315. doi: 10.1158/1078-0432.CCR-06-1727 CrossRefPubMedGoogle Scholar
  14. 14.
    Clark WH Jr, Elder DE, Guerry Dt, Braitman LE, Trock BJ, Schultz D, Synnestvedt M, Halpern AC (1989) Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81(24):1893–1904CrossRefPubMedGoogle Scholar
  15. 15.
    Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77(7):1303–1310. doi: 10.1002/(SICI)1097-0142 CrossRefPubMedGoogle Scholar
  16. 16.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. doi: 10.1038/nm1093 CrossRefPubMedGoogle Scholar
  17. 17.
    Yu P, Fu YX (2006) Tumor-infiltrating T lymphocytes: friends or foes? Lab Invest 86(3):231–245. doi: 10.1038/labinvest.3700389 CrossRefPubMedGoogle Scholar
  18. 18.
    Feng X, Li B, Ye H, Long D (2011) Increased frequency of CD4+CD25(high)FoxP3+ regulatory T cells in patients with hepatocellular carcinoma. Arch Immunol Ther Exp (Warsz) 59(4):309–314. doi: 10.1007/s00005-011-0127-0 CrossRefGoogle Scholar
  19. 19.
    Oble DA, Loewe R, Yu P, Mihm MC Jr (2009) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun 9:3PubMedCentralPubMedGoogle Scholar
  20. 20.
    Polcher M, Braun M, Friedrichs N, Rudlowski C, Bercht E, Fimmers R, Sauerwald A, Keyver-Paik MD, Kubler K, Buttner R, Kuhn WC, Hernando JJ (2010) Foxp3(+) cell infiltration and granzyme B(+)/Foxp3(+) cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma. Cancer Immunol Immunother 59(6):909–919. doi: 10.1007/s00262-010-0817-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu MA (2010) Immunologic basis of vaccine vectors. Immunity 33(4):504–515. doi: 10.1016/j.immuni.2010.10.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Sonabend AM, Rolle CE, Lesniak MS (2008) The role of regulatory T cells in malignant glioma. Anticancer Res 28(2B):1143–1150PubMedGoogle Scholar
  23. 23.
    El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437. doi: 10.3171/jns.2006.105.3.430 CrossRefPubMedGoogle Scholar
  24. 24.
    Yang I, Tihan T, Han SJ, Wrensch MR, Wiencke J, Sughrue ME, Parsa AT (2010) CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci 17(11):1381–1385. doi: 10.1016/j.jocn.2010.03.031 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, Grau S, Hiraoka N, Eckstein V, Ecker RC, Korff T, von Deimling A, Unterberg A, Beckhove P, Herold-Mende C (2011) Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res 17(13):4296–4308. doi: 10.1158/1078-0432.CCR-10-2557 CrossRefPubMedGoogle Scholar
  26. 26.
    Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN (2008) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14(16):5166–5172. doi: 10.1158/1078-0432.CCR-08-0320 CrossRefPubMedGoogle Scholar
  27. 27.
    Yue Q, Zhang X, Ye HX, Wang Y, Du ZG, Yao Y, Mao Y (2014) The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J Neurooncol 116(2):251–259. doi: 10.1007/s11060-013-1314-0 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Jacobs JF, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJ, Wesseling P, Adema GJ (2010) Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 225(1–2):195–199. doi: 10.1016/j.jneuroim.2010.05.020 CrossRefPubMedGoogle Scholar
  29. 29.
    Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, Cummings T, Allison JP, Bigner DD, Sampson JH (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167. doi: 10.1158/1078-0432.CCR-06-2070 CrossRefPubMedGoogle Scholar
  30. 30.
    Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, Cui X, Cummings TJ, Bigner DD, Gilboa E, Sampson JH (2006) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12(14 Pt 1):4294–4305. doi: 10.1158/1078-0432.CCR-06-0053 CrossRefPubMedGoogle Scholar
  31. 31.
    Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, Congdon KL, Archer GE, Desjardins A, Friedman AH, Friedman HS, Herndon JE 2nd, McLendon RE, Reardon DA, Vredenburgh JJ, Bigner DD, Sampson JH (2011) Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118(11):3003–3012. doi: 10.1182/blood-2011-02-334565 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Slodkowska J, Chyczewski L, Wojciechowski M (2008) Virtual slides: application in pulmonary pathology consultations. Folia Histochem Cytobiol 46(1):121–124. doi: 10.2478/v10042-008-0018-3 CrossRefPubMedGoogle Scholar
  33. 33.
    Staniszewski W (2009) Virtual microscopy, data management and image analysis in Aperio ScanScope system. Folia Histochem Cytobiol 47(4):699–701. doi: 10.2478/v10042-009-0115-y PubMedGoogle Scholar
  34. 34.
    Wang L, Zhang B, Xu X, Zhang S, Yan X, Kong F, Feng X, Wang J (2014) Clinical significance of FOXP3 expression in human gliomas. Clin Transl Oncol 16(1):36–43. doi: 10.1007/s12094-013-1037-x CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Y, Lan Q, Lu L, Chen M, Xia Z, Ma J, Wang J, Fan H, Shen Y, Ryffel B, Brand D, Quismorio F, Liu Z, Horwitz DA, Xu A, Zheng SG (2014) Phenotypic and functional characteristic of a newly identified CD8+Foxp3- CD103+ regulatory T cells. J Mol Cell Biol 6(1):81–92. doi: 10.1093/jmcb/mjt026 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599. doi: 10.1093/neuonc/nor042 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12(11):1113–1125. doi: 10.1093/neuonc/noq082 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200. doi: 10.1038/ni758 CrossRefPubMedGoogle Scholar
  39. 39.
    deLeeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18(11):3022–3029. doi: 10.1158/1078-0432.CCR-11-3216 CrossRefPubMedGoogle Scholar
  40. 40.
    Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster KE, Sprent J, Culley FJ, Johansson C, Openshaw PJ (2012) Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol 5(2):161–172. doi: 10.1038/mi.2011.62 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, Tsang KY, Licchetta A, Mannucci S, Loiacono L, Tassone P, Francini G, Tagliaferri P (2010) Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother 33(4):435–441. doi: 10.1097/CJI.0b013e3181d32f01 CrossRefPubMedGoogle Scholar
  42. 42.
    Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE, Antony PA (2013) Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 190(9):4899–4909. doi: 10.4049/jimmunol.1300271 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elias J. Sayour
    • 1
    • 2
  • Pat McLendon
    • 3
  • Roger McLendon
    • 2
  • Gabriel De Leon
    • 1
    • 4
  • Renee Reynolds
    • 3
  • Jesse Kresak
    • 5
  • John H. Sampson
    • 2
    • 3
  • Duane A. Mitchell
    • 1
    Email author
  1. 1.University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, Department of NeurosurgeryUniversity of FloridaGainesvilleUSA
  2. 2.Department of PathologyDuke University Medical CenterDurhamUSA
  3. 3.Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of SurgeryDuke University Medical CenterDurhamUSA
  4. 4.Department of Molecular Cancer BiologyDuke University Medical CenterDurhamUSA
  5. 5.Department of PathologyUniversity of FloridaGainesvilleUSA

Personalised recommendations