Skip to main content

Advertisement

Log in

A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN)

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

We conducted a phase I dose escalation study to evaluate the safety and immunologic response to peptide immunomodulatory vaccines GL-0810 (HPV16) and GL-0817 (MAGE-A3) in HPV16 and MAGE-A3-positive RM–SCCHN patients, respectively.

Methods

Three dose levels (500, 1,000, and 1,500 µg) of GL-0810 or GL-0817 with adjuvants Montanide (1.2 ml) and GM-CSF (100 µg/m2) were administered subcutaneously q2 weeks for a total of four vaccinations in HPV16 and MAGE-A3-positive RM–SCCHN patients, respectively.

Results

Nine and seven patients were enrolled in the HPV16 and MAGE-A3 cohorts, respectively. No dose-limiting toxicities were observed, and toxicity was predominantly local and grade 1 (erythema, pain, and itching at the injection site). In those patients who received all four vaccinations, 80 % (4/5) of the HPV16 cohort and 67 % (4/6) of the MAGE-A3 cohort developed antigen-specific T cell and antibody responses to the vaccine. Significant concordance between T cell and antibody responses was observed for both groups. No clear dose–response correlation was seen. All patients progressed by RECIST at first repeat imaging, except for one patient in the MAGE-A3 500 µg cohort who had stable disease for 10.5 months. The median PFS and OS for the MAGE-A3 cohorts were 79 and 183 days, respectively, and for the HPV16 cohort 80 and 196 days, respectively.

Conclusions

GL-0810 and GL-0817 were well tolerated in patients with RM–SCCHN with T cell and antibody responses observed in the majority of patients who received all four vaccinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

B7H1:

B7 homolog 1

CNS:

Central nervous system

CR:

Complete response

CTCAE:

Common toxicity criteria for adverse events

DLT:

Dose-limiting toxicity

ECOG:

Eastern Cooperative Oncology Group

ELISA:

Enzyme-linked immunosorbent assay

ELISPOT:

Enzyme-linked immunospot

GM-CSF:

Granulocyte macrophage colony stimulating factor

HIV:

Human immunodeficiency virus

HLA:

Human leukocyte antigen

HPV16:

Human papillomavirus 16

IFN-γ:

Interferon gamma

IL-10:

Interleukin 10

MAGE:

Melanoma antigen E

MDSC:

Myeloid derived suppressor cells

ml:

Milliliter

m2:

Meter squared

MTD:

Maximum tolerated dose

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PD:

Progressive disease

PD-1:

Programmed death 1

PD-L1:

Programmed death-ligand 1

PET/CT:

Positron emission tomography–computed tomography

PGE2:

Prostaglandin E2

PR:

Partial response

RECIST:

Response evaluation criteria in solid tumors

R/M:

Recurrent/metastatic

SCCHN:

Squamous cell carcinoma of the head and neck

SD:

Stable disease

TAP:

Transporter associated with antigen processing

TGF-β:

Transforming growth factor beta

Tregs:

Regulatory T cells

UMGCC:

University of Maryland Greenebaum Cancer Center

μg:

Microgram

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. McDonald MW, Lawson J, Garg MK et al (2011) ACR appropriateness criteria retreatment of recurrent head and neck cancer after prior definitive radiation expert panel on radiation oncology-head and neck cancer. Int J Radiat Oncol Biol Phys 80:1292–1298. doi:10.1016/j.ijrobp.2011.02.014

    Article  PubMed  Google Scholar 

  3. Vermorken JB, Specenier P (2010) Optimal treatment for recurrent/metastatic head and neck cancer. Ann Oncol 21 Suppl 7: vii252–261. doi 10.1093/annonc/mdq453

  4. Gillison ML, Koch WM, Capone RB et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92:709–720. doi:10.1093/jnci/92.9.709

    Article  CAS  PubMed  Google Scholar 

  5. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14:467–475. doi:10.1007/s12105-010-0171-9

    Article  CAS  PubMed  Google Scholar 

  6. Munoz N, Bosch FX, de Sanjose S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527. doi:10.1056/NEJMoa021641

    Article  PubMed  Google Scholar 

  7. Kenter GG, Welters MJ, Valentijn AR et al (2008) Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14:169–177. doi:10.1158/1078-0432.CCR-07-1881

    Article  CAS  PubMed  Google Scholar 

  8. Ressing ME, Sette A, Brandt RM et al (1995) Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154:5934–5943

    CAS  PubMed  Google Scholar 

  9. van der Burg SH, Ressing ME, Kwappenberg KM et al (2001) Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int J Cancer 91:612–618. doi:10.1002/1097-0215

    Article  PubMed  Google Scholar 

  10. Cuffel C, Rivals JP, Zaugg Y et al (2011) Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma. Int J Cancer 128:2625–2634. doi:10.1002/ijc.25607

    Article  CAS  PubMed  Google Scholar 

  11. Figueiredo DL, Mamede RC, Spagnoli GC et al (2011) High expression of cancer testis antigens MAGE-A, MAGE-C1/CT7, MAGE-C2/CT10, NY-ESO-1, and gage in advanced squamous cell carcinoma of the larynx. Head Neck 33:702–707. doi:10.1002/hed.21522

    Article  PubMed  Google Scholar 

  12. Jungbluth AA, Ely S, DiLiberto M et al (2005) The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 106:167–174. doi:10.1182/blood-2004-12-4931

    Article  CAS  PubMed  Google Scholar 

  13. Condomines M, Hose D, Raynaud P et al (2007) Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 178:3307–3315. doi:10.4049/jimmunol.178.5.3307

    Article  CAS  PubMed  Google Scholar 

  14. van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647. doi:10.1126/science.1840703

    Article  PubMed  Google Scholar 

  15. Kobayashi H, Song Y, Hoon DS et al (2001) Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex class II alleles. Cancer Res 61:4773–4778

    CAS  PubMed  Google Scholar 

  16. Lu J, Wettstein PJ, Higashimoto Y et al (2001) TAP-independent presentation of CTL epitopes by Trojan antigens. J Immunol 166:7063–7071. doi:10.4049/jimmunol.166.12.7063

    Article  CAS  PubMed  Google Scholar 

  17. Lu J, Higashimoto Y, Appella E, Celis E (2004) Multiepitope Trojan antigen peptide vaccines for the induction of antitumor CTL and Th immune responses. J Immunol 172:4575–4582. doi:10.4049/jimmunol.172.7.4575

    Article  CAS  PubMed  Google Scholar 

  18. Voskens CJ, Sewell D, Hertzano R et al (2012) Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck 34:1734–1746. doi:10.1002/hed.22004

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fruh K, Yang Y (1999) Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 11:76–81. doi:10.1016/S0952-7915(99)80014-4

    Article  CAS  PubMed  Google Scholar 

  20. Cheever MA, Chen W (1997) Therapy with cultured T cells: principles revisited. Immunol Rev 157:177–194. doi:10.1111/j.1600-065X.1997.tb00982.x

    Article  CAS  PubMed  Google Scholar 

  21. Gao FG, Khammanivong V, Liu WJ et al (2002) Antigen-specific CD4 + T-cell help is required to activate a memory CD8 + T cell to a fully functional tumor killer cell. Cancer Res 62:6438–6441

    CAS  PubMed  Google Scholar 

  22. Voskens CJ, Strome SE, Sewell DA (2009) Synthetic peptide-based cancer vaccines: lessons learned and hurdles to overcome. Curr Mol Med 9:683–693

    Article  CAS  PubMed  Google Scholar 

  23. Pichichero ME (2008) Improving vaccine delivery using novel adjuvant systems. Hum Vaccin 4:262–270. doi:10.4161/hv.4.4.5742

    Article  CAS  PubMed  Google Scholar 

  24. Kreimer AR, Johansson M, Waterboer T et al (2013) Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol 31:2708–2715. doi:10.1200/JCO.2012.47.2738

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kruit WH, van Ojik HH, Brichard VG et al (2005) Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int J Cancer 117:596–604. doi:10.1002/ijc.21264

    Article  CAS  PubMed  Google Scholar 

  26. Klebanoff CA, Acquavella N, Yu Z, Restifo NP (2011) Therapeutic cancer vaccines: are we there yet? Immunol Rev 239:27–44. doi:10.1111/j.1600-065X.2010.00979.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Atanackovic D, Altorki NK, Stockert E et al (2004) Vaccine-induced CD4 + T cell responses to MAGE-3 protein in lung cancer patients. J Immunol 172:3289–3296. doi:10.4049/jimmunol.172.5.3289

    Article  CAS  PubMed  Google Scholar 

  28. Vansteenkiste J, Zielinski M, Linder A et al (2013) Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol 31:2396–2403. doi:10.1200/JCO.2012.43.7103

    Article  CAS  PubMed  Google Scholar 

  29. Marchand M, Punt CJ, Aamdal S et al (2003) Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur J Cancer 39:70–77. doi:10.1016/S0959-8049(02)00479-3

    Article  CAS  PubMed  Google Scholar 

  30. Kruit WH, Suciu S, Dreno B et al (2013) Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma. J Clin Oncol 31:2413–2420. doi:10.1200/JCO.2012.43.7111

    Article  CAS  PubMed  Google Scholar 

  31. Brinkman JA, Hughes SH, Stone P et al (2007) Therapeutic vaccination for HPV induced cervical cancers. Dis Markers 23:337–352. doi:10.1155/2007/245146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Allen CT, Judd NP, Bui JD, Uppaluri R (2012) The clinical implications of antitumor immunity in head and neck cancer. Laryngoscope 122:144–157. doi:10.1002/lary.21913

    Article  PubMed  Google Scholar 

  33. Young MR (2006) Protective mechanisms of head and neck squamous cell carcinomas from immune assault. Head Neck 28:462–470. doi:10.1002/hed.20331

    Article  PubMed  Google Scholar 

  34. Lyford-Pike S, Peng S, Young GD et al (2013) Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73:1733–1741. doi:10.1158/0008-5472.CAN-12-2384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Strome SE, Dong H, Tamura H et al (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63:6501–6505

    CAS  PubMed  Google Scholar 

  36. Ukpo OC, Thorstad WL, Lewis JS Jr (2012) B7-H1 expression model for immune evasion in human papillomavirus-related oropharyngeal squamous cell carcinoma. Head Neck Pathol 7:113–121. doi:10.1007/s12105-012-0406-z

    Article  PubMed Central  PubMed  Google Scholar 

  37. Li W, Deng XM, Wang CX et al (2010) Down-regulation of HLA class I antigen in human papillomavirus type 16 E7 expressing HaCaT cells: correlate with TAP-1 expression. Int J Gynecol Cancer 20:227–232. doi:10.1111/IGC.0b013e3181cceec5

    Article  PubMed  Google Scholar 

  38. Campo MS, Graham SV, Cortese MS et al (2010) HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology 407:137–142. doi:10.1016/j.virol.2010.07.044

    Article  CAS  PubMed  Google Scholar 

  39. Schott AK, Pries R, Wollenberg B (2010) Permanent up-regulation of regulatory T-lymphocytes in patients with head and neck cancer. Int J Mol Med 26:67–75. doi:10.3892/ijmm_00000436

    CAS  PubMed  Google Scholar 

  40. Strauss L, Bergmann C, Szczepanski M et al (2007) A unique subset of CD4 + CD25highFoxp3 + T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354. doi:10.1158/1078-0432.CCR-07-0472

    Article  CAS  PubMed  Google Scholar 

  41. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281. doi:10.1016/j.semcancer.2012.01.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Herbst RS, Arquette M, Shin DM et al (2005) Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 23:5578–5587. doi:10.1200/JCO.2005.07.120

    Article  CAS  PubMed  Google Scholar 

  43. Zenda S, Onozawa Y, Boku N et al (2007) Single-agent docetaxel in patients with platinum-refractory metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN). Jpn J Clin Oncol 37:477–481. doi:10.1093/jjco/hym059

    Article  PubMed  Google Scholar 

  44. Le DT, Jaffee EM (2012) Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 72:3439–3444. doi:10.1158/0008-5472.CAN-11-3912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lutsiak ME, Semnani RT, De Pascalis R et al (2005) Inhibition of CD4(+)25 + T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868. doi:10.1182/blood-2004-06-2410

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Strome is a co-founder and stockholder of Gliknik Inc., a biotechnology company and licensee of the Trojan Peptide Vaccines. Dr. Strome also receives royalties from the Mayo Clinic College of Medicine for intellectual property related to B7-H1 (PD-L1). All other authors have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan P. Zandberg.

Additional information

Scott E. Strome and Martin J. Edelman have share senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandberg, D.P., Rollins, S., Goloubeva, O. et al. A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol Immunother 64, 367–379 (2015). https://doi.org/10.1007/s00262-014-1640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1640-x

Keywords

Navigation