Skip to main content

Advertisement

Log in

CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive infusion of natural killer (NK) cells is being increasingly explored as a therapy in patients with cancer, although clinical responses are thus far limited to patients with hematological malignancies. Inadequate homing of infused NK cells to the tumor site represents a key factor that may explain the poor anti-tumor effect of NK cell therapy against solid tumors. One of the major players in the regulation of lymphocyte chemotaxis is the chemokine receptor chemokine (C-X-C motif) receptor 3 (CXCR3) which is expressed on activated NK cells and induces NK cell migration toward gradients of the chemokine (C-X-C motif) ligand (CXCL9, 10 and 11). Here, we show that ex vivo expansion of human NK cells results in a tenfold increased expression of the CXCR3 receptor compared with resting NK cells (p = 0.04). Consequently, these NK cells displayed an improved migratory capacity toward solid tumors, which was dependent on tumor-derived CXCL10. In xenograft models, adoptively transferred NK cells showed increased migration toward CXCL10-transfected melanoma tumors compared with CXCL10-negative wild-type tumors, resulting in significantly reduced tumor burden and increased survival (median survival 41 vs. 32 days, p = 0.03). Furthermore, administration of interferon-gamma locally in the tumor stimulated the production of CXCL10 in subcutaneous melanoma tumors resulting in increased infiltration of adoptively transferred CXCR3-positive expanded NK cells. Our findings demonstrate the importance of CXCL10-induced chemoattraction in the anti-tumor response of adoptively transferred expanded NK cells against solid melanoma tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

BLI:

Bioluminescence imaging

CCR:

C-C chemokine receptor

Cr:

Chromium

CTL:

Cytotoxic T lymphocyte

CXCL:

C-X-C motif ligand

CXCR:

C-X-C motif receptor

DiR:

1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide

DNAM-1:

DNAX accessory molecule-1

DOX:

Doxorubicin

E:T:

Effector-to-target ratio

EBV:

Epstein–Barr virus

FCS:

Fetal calf serum

Gy:

Gray

HLA:

Human leukocyte antigen

I.P:

Intraperitoneally

I.V:

Intravenous

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IL:

Interleukin

IP-10:

IFN-gamma-inducible protein 10

I-TAC:

Interferon-inducible T cell alpha chemoattractant

LCL:

Lymphoblastoid cell line

LFA-1:

Leukocyte function-associated antigen 1

LNs:

Lymph nodes

MFI:

Mean fluorescence imaging

MICA/B:

Major histocompatibility complex class I-related chains A and B

MIG:

Monokine induced by gamma interferon

MOI:

Multiplicity of infection

NCRs:

Natural cytotoxicity receptors

NK:

Natural killer

NKG2D:

Natural killer group 2 membrane D

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PD-L1:

Programmed death-ligand 1

PGE2:

Prostaglandin E2

poly-I:C:

Poly-inositol–cytidine

PVR:

Poliovirus receptor

RCC:

Renal cell carcinoma

S.C:

Subcutaneous

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TRAIL:

TNF-related apoptosis-inducing ligand

ULBPs:

UL16-binding proteins

VLA-4:

Very late antigen-4

References

  1. Sarhan D, D’Arcy P, Wennerberg E, Liden M, Hu J, Winqvist O, Rolny C, Lundqvist A (2013) Activated monocytes augment TRAIL-mediated cytotoxicity by human NK cells through release of IFN-gamma. Eur J Immunol 43(1):249–257. doi:10.1002/eji.201242735

    Article  CAS  PubMed  Google Scholar 

  2. Benson DM Jr, Bakan CE, Zhang S, Collins SM, Liang J, Srivastava S, Hofmeister CC, Efebera Y, Andre P, Romagne F, Blery M, Bonnafous C, Zhang J, Clever D, Caligiuri MA, Farag SS (2011) IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118(24):6387–6391. doi:10.1182/blood-2011-06-360255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Salagianni M, Lekka E, Moustaki A, Iliopoulou EG, Baxevanis CN, Papamichail M, Perez SA (2011) NK cell adoptive transfer combined with Ontak-mediated regulatory T cell elimination induces effective adaptive antitumor immune responses. J Immunol 186(6):3327–3335. doi:10.4049/jimmunol.1000652

    Article  CAS  PubMed  Google Scholar 

  4. Kim EK, Ahn YO, Kim S, Kim TM, Keam B, Heo DS (2013) Ex vivo activation and expansion of natural killer cells from patients with advanced cancer with feeder cells from healthy volunteers. Cytotherapy 15(2):231–241.e1. doi:10.1016/j.jcyt.2012.10.019

  5. Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, Childs R (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11(3):341–355. doi:10.1080/14653240902807034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106(1):376–383. doi:10.1182/blood-2004-12-4797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Takanami I, Takeuchi K, Giga M (2001) The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J Thorac Cardiovasc Surg 121(6):1058–1063. doi:10.1067/mtc.2001.113026

    Article  CAS  PubMed  Google Scholar 

  8. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S, Aikou T (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3):577–583

    Article  CAS  PubMed  Google Scholar 

  9. Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35(1):23–28

    Article  PubMed  Google Scholar 

  10. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA, Moreno M (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79(12):2320–2328

    Article  CAS  PubMed  Google Scholar 

  11. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100. doi:10.1126/science.1068440

    Article  CAS  PubMed  Google Scholar 

  12. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057. doi:10.1182/blood-2004-07-2974

    Article  CAS  PubMed  Google Scholar 

  13. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17(19):6287–6297. doi:10.1158/1078-0432.CCR-11-1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Curti A, Ruggeri L, D’Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, Paolini S, Fruet F, Isidori A, Parisi S, Bandini G, Baccarani M, Velardi A, Lemoli RM (2011) Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118(12):3273–3279. doi:10.1182/blood-2011-01-329508

    Article  CAS  PubMed  Google Scholar 

  15. Lundqvist A, Berg M, Smith A, Childs RW (2011) Bortezomib treatment to potentiate the anti-tumor immunity of ex vivo expanded adoptively infused autologous natural killer cells. J Cancer 2:383–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, Cosman D, De Libero G, Wodnar-Filipowicz A (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105(9):3615–3622. doi:10.1182/blood-2004-07-2585

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R (2011) Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 60(8):1195–1205. doi:10.1007/s00262-011-1050-2

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, Hokland ME, Bryant JL, Zhang Y, Nannmark U, Watkins SC, Goldfarb RH, Herberman RB, Basse PH (2003) Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases. Int J Cancer 105(4):512–519. doi:10.1002/ijc.11119

    Article  CAS  PubMed  Google Scholar 

  19. Hagenaars M, Zwaveling S, Kuppen PJ, Ensink NG, Eggermont AM, Hokland ME, Basse PH, van de Velde CJ, Fleuren GJ, Nannmark U (1998) Characteristics of tumor infiltration by adoptively transferred and endogenous natural-killer cells in a syngeneic rat model: implications for the mechanism behind anti-tumor responses. Int J Cancer 78(6):783–789

    Article  CAS  PubMed  Google Scholar 

  20. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, Yang JC, Yolles P, Larson SM, Rosenberg SA (1989) Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 7(2):250–261

    CAS  PubMed  Google Scholar 

  21. Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58. doi:10.1007/82_2010_20

    CAS  PubMed  Google Scholar 

  22. Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215. doi:10.1038/icb.2010.158

    Article  CAS  PubMed  Google Scholar 

  23. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187(6):875–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Somanchi SS, Somanchi A, Cooper LJ, Lee DA (2012) Engineering lymph node homing of ex vivo expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood 119(22):5164–5172. doi:10.1182/blood-2011-11-389924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y, Zhang M, Whittington M, Yang Y, Overwijk WW, Lizee G, Hwu P (2010) Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 16(22):5458–5468. doi:10.1158/1078-0432.CCR-10-0712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, Camus M, Gillard M, Bruneval P, Fridman WH, Pages F, Trajanoski Z, Galon J (2010) Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138(4):1429–1440. doi:10.1053/j.gastro.2009.10.057

    Article  CAS  PubMed  Google Scholar 

  27. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pages F, Galon J (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618. doi:10.1200/JCO.2010.30.5425

    Article  PubMed  Google Scholar 

  28. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951. doi:10.1200/JCO.2008.19.6147

    Article  CAS  PubMed  Google Scholar 

  29. Luster AD, Unkeless JC, Ravetch JV (1985) Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315(6021):672–676

    Article  CAS  PubMed  Google Scholar 

  30. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF (2009) Chemokine expression in melanoma metastases associated with CD8 + T-cell recruitment. Cancer Res 69(7):3077–3085. doi:10.1158/0008-5472.CAN-08-2281

    Article  CAS  PubMed  Google Scholar 

  31. Kondo T, Nakazawa H, Ito F, Hashimoto Y, Osaka Y, Futatsuyama K, Toma H, Tanabe K (2006) Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci 97(8):780–786. doi:10.1111/j.1349-7006.2006.00231.x

    Article  CAS  PubMed  Google Scholar 

  32. Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM, Witz IP, Ben-Baruch A (2007) CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 67(7):3396–3405. doi:10.1158/0008-5472.CAN-06-3087

    Article  CAS  PubMed  Google Scholar 

  33. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. doi:10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  34. Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, Asgharzadeh S, Groshen S, Wilson SB, Seeger RC (2004) Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199(9):1213–1221. doi:10.1084/jem.20031462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Adler EP, Lemken CA, Katchen NS, Kurt RA (2003) A dual role for tumor-derived chemokine RANTES (CCL5). Immunol Lett 90(2–3):187–194

    Article  CAS  PubMed  Google Scholar 

  36. Erreni M, Bianchi P, Laghi L, Mirolo M, Fabbri M, Locati M, Mantovani A, Allavena P (2009) Expression of chemokines and chemokine receptors in human colon cancer. Methods Enzymol 460:105–121. doi:10.1016/S0076-6879(09)05205-7

    Article  CAS  PubMed  Google Scholar 

  37. Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97(2):367–375

    Article  CAS  PubMed  Google Scholar 

  38. Hodge DL, Schill WB, Wang JM, Blanca I, Reynolds DA, Ortaldo JR, Young HA (2002) IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXCR3 expression. J Immunol 168(12):6090–6098

    Article  CAS  PubMed  Google Scholar 

  39. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, Katz G, Haimov-Kochman R, Fujii N, Yagel S, Peled A, Mandelboim O (2003) CXCL12 expression by invasive trophoblasts induces the specific migration of CD16-human natural killer cells. Blood 102(5):1569–1577. doi:10.1182/blood-2003-02-0517

    Article  CAS  PubMed  Google Scholar 

  40. Beider K, Nagler A, Wald O, Franitza S, Dagan-Berger M, Wald H, Giladi H, Brocke S, Hanna J, Mandelboim O, Darash-Yahana M, Galun E, Peled A (2003) Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102(6):1951–1958. doi:10.1182/blood-2002-10-3293

    Article  CAS  PubMed  Google Scholar 

  41. Evans JH, Horowitz A, Mehrabi M, Wise EL, Pease JE, Riley EM, Davis DM (2011) A distinct subset of human NK cells expressing HLA-DR expand in response to IL-2 and can aid immune responses to BCG. Eur J Immunol 41(7):1924–1933. doi:10.1002/eji.201041180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kajitani K, Tanaka Y, Arihiro K, Kataoka T, Ohdan H (2012) Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat 134(1):139–155. doi:10.1007/s10549-011-1944-x

    Article  PubMed  Google Scholar 

  43. Lim O, Lee Y, Chung H, Her JH, Kang SM, Jung MY, Min B, Shin H, Kim TM, Heo DS, Hwang YK, Shin EC (2013) GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo. PLoS ONE 8(1):e53611. doi:10.1371/journal.pone.0053611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sutlu T, Stellan B, Gilljam M, Quezada HC, Nahi H, Gahrton G, Alici E (2010) Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy 12(8):1044–1055. doi:10.3109/14653249.2010.504770

    Article  CAS  PubMed  Google Scholar 

  45. Loos T, Dekeyzer L, Struyf S, Schutyser E, Gijsbers K, Gouwy M, Fraeyman A, Put W, Ronsse I, Grillet B, Opdenakker G, Van Damme J, Proost P (2006) TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis. Lab Invest 86(9):902–916. doi:10.1038/labinvest.3700453

    Article  CAS  PubMed  Google Scholar 

  46. Furuya M, Suyama T, Usui H, Kasuya Y, Nishiyama M, Tanaka N, Ishiwata I, Nagai Y, Shozu M, Kimura S (2007) Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol 38(11):1676–1687. doi:10.1016/j.humpath.2007.03.023

    Article  CAS  PubMed  Google Scholar 

  47. Muthuswamy R, Berk E, Junecko BF, Zeh HJ, Zureikat AH, Normolle D, Luong TM, Reinhart TA, Bartlett DL, Kalinski P (2012) NF-kappaB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 72(15):3735–3743. doi:10.1158/0008-5472.CAN-11-4136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wennerberg E, Sarhan D, Carlsten M, Kaminskyy VO, D’Arcy P, Zhivotovsky B, Childs R, Lundqvist A (2013) Doxorubicin sensitizes human tumor cells to NK cell- and T-cell-mediated killing by augmented TRAIL receptor signaling. Int J Cancer 133(7):1643–1652. doi:10.1002/ijc.28163

    Article  CAS  PubMed  Google Scholar 

  49. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68(20):8437–8445. doi:10.1158/0008-5472.CAN-08-1440

    Article  CAS  PubMed  Google Scholar 

  50. Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R (2009) Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 58(9):1517–1526. doi:10.1007/s00262-009-0682-y

    Article  CAS  PubMed  Google Scholar 

  51. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, Capanni M, Umansky V, Paschen A, Sucker A, Pende D, Groh V, Biassoni R, Hoglund P, Kato M, Shibuya K, Schadendorf D, Anichini A, Ferrone S, Velardi A, Karre K, Shibuya A, Carbone E, Colucci F (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119(5):1251–1263. doi:10.1172/JCI36022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lee JH, Park S, Cheon S, Lee JH, Kim S, Hur DY, Kim TS, Yoon SR, Yang Y, Bang SI, Park H, Lee HT, Cho D (2011) 1,25-Dihydroxyvitamin D(3) enhances NK susceptibility of human melanoma cells via Hsp60-mediated FAS expression. Eur J Immunol 41(10):2937–2946. doi:10.1002/eji.201141597

    Article  CAS  PubMed  Google Scholar 

  53. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A (2014) Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 20(15):4096–4106. doi:10.1158/1078-0432.CCR-14-0635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the staff at the animal facility at the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet. Dhifaf Sarhan and Rolf Kiessling at the Department of Oncology-Pathology, Karolinska Institutet for intellectual input. This work was supported by funding from The Swedish Research Council (#522-208-2377), The Swedish Cancer Society (#CAN 2012/474), FP7 Marie Curie re-integration Grant (#246759), The Cancer Society in Stockholm (#121132), the Swedish Society of Medicine (#325751), Karolinska Institutet, Jeanssons Stiftelser, Åke Wibergs Stiftelse, Magnus Bergvalls Stiftelse, Fredrik och Ingrid Thurings Stiftelse, Stiftelsen Clas Groschinskys Minnesfond, and the Division of Intramural Research at the Hematology Branch of the National Heart Blood and Lung Institute.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lundqvist.

Additional information

Parts of the work have been published at the Cold Spring Harbor Asia Conference—Tumor Immunology and Immunotherapy, Oct 28th–Nov 1st 2013, Suzhou, China.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wennerberg, E., Kremer, V., Childs, R. et al. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother 64, 225–235 (2015). https://doi.org/10.1007/s00262-014-1629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1629-5

Keywords

Navigation