Cancer Immunology, Immunotherapy

, Volume 64, Issue 1, pp 113–121 | Cite as

Armed antibodies for cancer treatment: a promising tool in a changing era

  • Riccardo Danielli
  • Roberto Patuzzo
  • Pier Adelchi Ruffini
  • Andrea Maurichi
  • Leonardo Giovannoni
  • Giuliano Elia
  • Dario Neri
  • Mario Santinami
Focussed Research Review


Advances in the understanding of tumor immunology and molecular biology of melanoma cells have favored a larger application of immunotherapy and targeted therapies in the clinic. Several selective mutant gene inhibitors and immunomodulating antibodies have been reported to improve overall survival or progression-free survival in metastatic melanoma patients. However, despite impressive initial responses, patients treated with selective inhibitors relapse quickly, and toxicities associated to the use of immunomodulating antibodies are not easily manageable. In this sense, the concept of using antibodies as delivery vehicles for the preferential in vivo localization of the drug at the site of disease with reduction of side effects has raised particular interest. Antibody–cytokine fusion proteins (termed immunocytokines) represent a new simple and effective way to deliver the immunomodulatory payload at the tumor site, with the aim of inducing both local and systemic antitumoral immune responses and limiting systemic toxicities. Several clinical trials have been conducted and are actually ongoing with different immunocytokines, in several tumor histotypes. In metastatic melanoma patients, different drug delivery modalities such as systemic, loco-regional and intratumoral are under investigation. In this review, the rationale for the use of L19-IL2 and L19-TNF, two clinical stage immunocytokines produced by the Philogen group, as well as opportunities for their future development will be discussed.


NIBIT 2013 Immunocytokines Intralesional immunotherapy Armed antibodies 



Adverse events


Body weight


Complete responses


Cytotoxic T-lymphocyte antigen 4


Disease control rate


Extra-domain B


Immunoglobulin G


Intralesional immunotherapy








Isolated limb perfusion


Immune-related response criteria


Natural killer


Overall survival


Programmed cell death protein 1


Positron Emission Tomography


Progression-free survival


Partial response


Response criteria in solid tumors


Tumor necrosis factor α


World Health Organization





Dario Neri acknowledges funding from ETH Zürich and the Swiss National Science Foundation.

Conflict of interest

Riccardo Danielli is a consultant/advisory board member for Philogen S.p.A. Roberto Patuzzo, Andrea Maurichi and Mario Santinami took part in the clinical trial sponsored by Philogen: “A phase II study of intratumoral application of L19-IL2/L19-TNF in melanoma patients in clinical stage III or stage IV M1a with the presence of injectable cutaneous and/or subcutaneous lesions.” Pier Adelchi Ruffini is an employee of Dompé S.p.A., a minority shareholder of Philogen S.p.A. Leonardo Giovannoni and Giuliano Elia are employees of Philogen S.p.A. Dario Neri is co-founder, shareholder and Board Member of Philogen S.p.A.


  1. 1.
    Krall N, Scheuermann J, Neri D (2013) Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew Chem Int Ed Engl 52(5):1384–1402. doi: 10.1002/anie.201204631 PubMedCrossRefGoogle Scholar
  2. 2.
    van der Veldt AA, Hendrikse NH, Smit EF, Mooijer MP, Rijnders AY, Gerritsen WR, van der Hoeven JJ, Windhorst AD, Lammertsma AA, Lubberink M (2010) Biodistribution and radiation dosimetry of 11C-labelled docetaxel in cancer patients. Eur J Nucl Med Mol Imaging 37(10):1950–1958. doi: 10.1007/s00259-010-1489-y PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67(1):254–261. doi: 10.1158/0008-5472.CAN-06-2531 PubMedCrossRefGoogle Scholar
  4. 4.
    Smith FO, Downey SG, Klapper JA, Yang JC, Sherry RM, Royal RE, Kammula US, Hughes MS, Restifo NP, Levy CL, White DE, Steinberg SM, Rosenberg SA (2008) Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin Cancer Res 14(17):5610–5618. doi: 10.1158/1078-0432.CCR-08-0116 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Pasche N, Neri D (2012) Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 17(11–12):583–590. doi: 10.1016/j.drudis.2012.01.007 PubMedCrossRefGoogle Scholar
  6. 6.
    Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159. doi: 10.1038/nrd1957 PubMedCrossRefGoogle Scholar
  7. 7.
    Gutbrodt KL, Schliemann C, Giovannoni L, Frey K, Pabst T, Klapper W, Berdel WE, Neri D (2013) Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia. Sci Transl Med 5(201):201ra118. doi: 10.1126/scitranslmed.3006221
  8. 8.
    Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5(6):436–446. doi: 10.1038/nrc1627 PubMedCrossRefGoogle Scholar
  9. 9.
    Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, Hirsch B, Zardi L, Paganelli G, Mariani G, Neri D, Durkop H, Menssen HD (2009) Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 113(10):2265–2274. doi: 10.1182/blood-2008-06-160416 PubMedCrossRefGoogle Scholar
  10. 10.
    Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102(1):75–85. doi: 10.1002/ijc.10662 PubMedCrossRefGoogle Scholar
  11. 11.
    Carnemolla B, Borsi L, Balza E, Castellani P, Meazza R, Berndt A, Ferrini S, Kosmehl H, Neri D, Zardi L (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99(5):1659–1665. doi: 10.1182/blood.V99.5.1659 PubMedCrossRefGoogle Scholar
  12. 12.
    Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, Neri D (2002) Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20(3):264–269. doi: 10.1038/nbt0302-264 PubMedCrossRefGoogle Scholar
  13. 13.
    Hemmerle T, Neri D (2014) The antibody-based targeted delivery of interleukin-4 and 12 to the tumor neovasculature eradicates tumors in three mouse models of cancer. Int J Cancer 134(2):467–477. doi: 10.1002/ijc.28359 PubMedCrossRefGoogle Scholar
  14. 14.
    Hemmerle T, Probst P, Giovannoni L, Green AJ, Meyer T, Neri D (2013) The antibody-based targeted delivery of TNF in combination with doxorubicin eradicates sarcomas in mice and confers protective immunity. Br J Cancer 109(5):1206–1213. doi: 10.1038/bjc.2013.421 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Marlind J, Kaspar M, Trachsel E, Sommavilla R, Hindle S, Bacci C, Giovannoni L, Neri D (2008) Antibody-mediated delivery of interleukin-2 to the stroma of breast cancer strongly enhances the potency of chemotherapy. Clin Cancer Res 14(20):6515–6524. doi: 10.1158/1078-0432.CCR-07-5041 PubMedCrossRefGoogle Scholar
  16. 16.
    Pasche N, Wulhfard S, Pretto F, Carugati E, Neri D (2012) The antibody-based delivery of interleukin-12 to the tumor neovasculature eradicates murine models of cancer in combination with paclitaxel. Clin Cancer Res 18(15):4092–4103. doi: 10.1158/1078-0432.CCR-12-0282 PubMedCrossRefGoogle Scholar
  17. 17.
    Schliemann C, Palumbo A, Zuberbuhler K, Villa A, Kaspar M, Trachsel E, Klapper W, Menssen HD, Neri D (2009) Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 113(10):2275–2283. doi: 10.1182/blood-2008-05-160747 PubMedCrossRefGoogle Scholar
  18. 18.
    Hess C, Venetz D, Neri D (2014) Emerging classes of armed antibody therapeutics against cancer. Med Chem Commun 5(4):408–431. doi: 10.1039/C3MD00360D CrossRefGoogle Scholar
  19. 19.
    Benckhuijsen C, Kroon BB, van Geel AN, Wieberdink J (1988) Regional perfusion treatment with melphalan for melanoma in a limb: an evaluation of drug kinetics. Eur J Surg Oncol 14(2):157–163PubMedGoogle Scholar
  20. 20.
    Creech O Jr, Krementz ET, Ryan RF, Winblad JN (1958) Chemotherapy of cancer: regional perfusion utilizing an extracorporeal circuit. Ann Surg 148(4):616–632PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Vrouenraets BC, Nieweg OE, Kroon BB (1996) Thirty-five years of isolated limb perfusion for melanoma: indications and results. Br J Surg 83(10):1319–1328PubMedCrossRefGoogle Scholar
  22. 22.
    Cornett WR, McCall LM, Petersen RP, Ross MI, Briele HA, Noyes RD, Sussman JJ, Kraybill WG, Kane JM III, Alexander HR, Lee JE, Mansfield PF, Pingpank JF, Winchester DJ, White RL Jr, Chadaram V, Herndon JE II, Fraker DL, Tyler DS, American College of Surgeons Oncology Group Trial Z (2006) Randomized multicenter trial of hyperthermic isolated limb perfusion with melphalan alone compared with melphalan plus tumor necrosis factor: American College of Surgeons Oncology Group Trial Z0020. J Clin Oncol 24(25):4196–4201. doi: 10.1200/JCO.2005.05.5152
  23. 23.
    Eggermont AM, Schraffordt Koops H, Klausner JM, Kroon BB, Schlag PM, Lienard D, van Geel AN, Hoekstra HJ, Meller I, Nieweg OE, Kettelhack C, Ben-Ari G, Pector JC, Lejeune FJ (1996) Isolated limb perfusion with tumor necrosis factor and melphalan for limb salvage in 186 patients with locally advanced soft tissue extremity sarcomas. The cumulative multicenter European experience. Ann Surg 224(6):756–764; discussion 764–765Google Scholar
  24. 24.
    Eggermont AM, Schraffordt Koops H, Lienard D, Kroon BB, van Geel AN, Hoekstra HJ, Lejeune FJ (1996) Isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-gamma and melphalan for nonresectable extremity soft tissue sarcomas: a multicenter trial. J Clin Oncol 14(10):2653–2665PubMedGoogle Scholar
  25. 25.
    Lejeune FJ, Lienard D, Leyvraz S, Mirimanoff RO (1993) Regional therapy of melanoma. Eur J Cancer 29A(4):606–612PubMedCrossRefGoogle Scholar
  26. 26.
    Bonvalot S, Laplanche A, Lejeune F, Stoeckle E, Le Pechoux C, Vanel D, Terrier P, Lumbroso J, Ricard M, Antoni G, Cavalcanti A, Robert C, Lassau N, Blay JY, Le Cesne A (2005) Limb salvage with isolated perfusion for soft tissue sarcoma: could less TNF-alpha be better? Ann Oncol 16(7):1061–1068. doi: 10.1093/annonc/mdi229 PubMedCrossRefGoogle Scholar
  27. 27.
    de Wilt JH, Manusama ER, van Tiel ST, van Ijken MG, ten Hagen TL, Eggermont AM (1999) Prerequisites for effective isolated limb perfusion using tumour necrosis factor alpha and melphalan in rats. Br J Cancer 80(1–2):161–166. doi: 10.1038/sj.bjc.6690335 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hill S, Fawcett WJ, Sheldon J, Soni N, Williams T, Thomas JM (1993) Low-dose tumour necrosis factor alpha and melphalan in hyperthermic isolated limb perfusion. Br J Surg 80(8):995–997PubMedCrossRefGoogle Scholar
  29. 29.
    Rossi CR, Foletto M, Mocellin S, Pilati P, Lise M (2004) Hyperthermic isolated limb perfusion with low-dose tumor necrosis factor-alpha and melphalan for bulky in-transit melanoma metastases. Ann Surg Oncol 11(2):173–177PubMedCrossRefGoogle Scholar
  30. 30.
    Papadia F, Basso V, Patuzzo R, Maurichi A, Di Florio A, Zardi L, Ventura E, Gonzalez-Iglesias R, Lovato V, Giovannoni L, Tasciotti A, Neri D, Santinami M, Menssen HD, De Cian F (2013) Isolated limb perfusion with the tumor-targeting human monoclonal antibody-cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. J Surg Oncol 107(2):173–179. doi: 10.1002/jso.23168 PubMedCrossRefGoogle Scholar
  31. 31.
    Testori A, Faries MB, Thompson JF, Pennacchioli E, Deroose JP, van Geel AN, Verhoef C, Verrecchia F, Soteldo J (2011) Local and intralesional therapy of in-transit melanoma metastases. J Surg Oncol 104(4):391–396. doi: 10.1002/jso.22029 PubMedCrossRefGoogle Scholar
  32. 32.
    Hersey P, Gallagher S (2014) Intralesional immunotherapy for melanoma. J Surg Oncol 109(4):320–326. doi: 10.1002/jso.23494 PubMedCrossRefGoogle Scholar
  33. 33.
    Si Z, Hersey P, Coates AS (1996) Clinical responses and lymphoid infiltrates in metastatic melanoma following treatment with intralesional GM-CSF. Melanoma Res 6(3):247–255PubMedCrossRefGoogle Scholar
  34. 34.
    von Wussow P, Block B, Hartmann F, Deicher H (1988) Intralesional interferon-alpha therapy in advanced malignant melanoma. Cancer 61(6):1071–1074CrossRefGoogle Scholar
  35. 35.
    Kubo H, Ashida A, Matsumoto K, Kageshita T, Yamamoto A, Saida T (2008) Interferon-beta therapy for malignant melanoma: the dose is crucial for inhibition of proliferation and induction of apoptosis of melanoma cells. Arch Dermatol Res 300(6):297–301. doi: 10.1007/s00403-008-0841-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Radny P, Caroli UM, Bauer J, Paul T, Schlegel C, Eigentler TK, Weide B, Schwarz M, Garbe C (2003) Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br J Cancer 89(9):1620–1626. doi: 10.1038/sj.bjc.6601320 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Weide B, Derhovanessian E, Pflugfelder A, Eigentler TK, Radny P, Zelba H, Pfohler C, Pawelec G, Garbe C (2010) High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer 116(17):4139–4146. doi: 10.1002/cncr.25156 PubMedCrossRefGoogle Scholar
  38. 38.
    Boyd KU, Wehrli BM, Temple CL (2011) Intra-lesional interleukin-2 for the treatment of in-transit melanoma. J Surg Oncol 104(7):711–717. doi: 10.1002/jso.21968 PubMedCrossRefGoogle Scholar
  39. 39.
    Dehesa LA, Vilar-Alejo J, Valeron-Almazan P, Carretero G (2009) Experience in the treatment of cutaneous in-transit melanoma metastases and satellitosis with intralesional interleukin-2. Actas Dermosifiliogr 100(7):571–585PubMedCrossRefGoogle Scholar
  40. 40.
    Gutwald JG, Groth W, Mahrle G (1994) Peritumoral injections of interleukin 2 induce tumour regression in metastatic malignant melanoma. Br J Dermatol 130(4):541–542PubMedCrossRefGoogle Scholar
  41. 41.
    Weide B, Eigentler TK, Pflugfelder A, Zelba H, Martens A, Pawelec G, Giovannoni L, Ruffini PA, Elia G, Neri D, Gutzmer R, Becker JC, Garbe C (2014) Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol Res 2(7):668–678. doi: 10.1158/2326-6066.CIR-13-0206 PubMedCrossRefGoogle Scholar
  42. 42.
    Schwager K, Hemmerle T, Aebischer D, Neri D (2013) The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. J Invest Dermatol 133(3):751–758. doi: 10.1038/jid.2012.376 PubMedCrossRefGoogle Scholar
  43. 43.
    Pretto F, Elia G, Castioni N, Neri D (2014) Preclinical evaluation of IL2-based immunocytokines supports their use in combination with dacarbazine, paclitaxel and TNF-based immunotherapy. Cancer Immunol Immunother 63(9):901–910. doi: 10.1007/s00262-014-1562-7 PubMedCrossRefGoogle Scholar
  44. 44.
    Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology 23(6):488–496PubMedCentralPubMedGoogle Scholar
  45. 45.
    van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11(4):397–408. doi: 10.1634/theoncologist.11-4-397 PubMedCrossRefGoogle Scholar
  46. 46.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi: 10.1016/j.ejca.2008.10.026 PubMedCrossRefGoogle Scholar
  47. 47.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420. doi: 10.1158/1078-0432.CCR-09-1624 PubMedCrossRefGoogle Scholar
  48. 48.
    Di Giacomo AM, Calabro L, Danielli R, Fonsatti E, Bertocci E, Pesce I, Fazio C, Cutaia O, Giannarelli D, Miracco C, Biagioli M, Altomonte M, Maio M (2013) Long-term survival and immunological parameters in metastatic melanoma patients who responded to ipilimumab 10 mg/kg within an expanded access programme. Cancer Immunol Immunother 62(6):1021–1028. doi: 10.1007/s00262-013-1418-6 PubMedCrossRefGoogle Scholar
  49. 49.
    Kaufman HL (2014) Melanoma as a model for precision medicine in oncology. Lancet Oncol 15(3):251–253. doi: 10.1016/S1470-2045(14)70059-2 PubMedCrossRefGoogle Scholar
  50. 50.
    Robert C, Schadendorf D, Messina M, Hodi FS, O’Day S, investigators MDX (2013) Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin Cancer Res 19(8):2232–2239. doi: 10.1158/1078-0432.CCR-12-3080
  51. 51.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi: 10.1056/NEJMoa1003466 PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Robert C, Thomas L, Bondarenko I, O’Day S, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364 (26):2517–2526. doi: 10.1056/NEJMoa1104621
  53. 53.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, Group B-S (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516. doi: 10.1056/NEJMoa1103782
  54. 54.
    Flaherty KT, Hennig M, Lee SJ, Ascierto PA, Dummer R, Eggermont AM, Hauschild A, Kefford R, Kirkwood JM, Long GV, Lorigan P, Mackensen A, McArthur G, O’Day S, Patel PM, Robert C, Schadendorf D (2014) Surrogate endpoints for overall survival in metastatic melanoma: a meta-analysis of randomised controlled trials. Lancet Oncol 15(3):297–304. doi: 10.1016/S1470-2045(14)70007-5 PubMedCrossRefGoogle Scholar
  55. 55.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martin-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365. doi: 10.1016/S0140-6736(12)60868-X PubMedCrossRefGoogle Scholar
  56. 56.
    Johannsen M, Spitaleri G, Curigliano G, Roigas J, Weikert S, Kempkensteffen C, Roemer A, Kloeters C, Rogalla P, Pecher G, Miller K, Berndt A, Kosmehl H, Trachsel E, Kaspar M, Lovato V, Gonzalez-Iglesias R, Giovannoni L, Menssen HD, Neri D, de Braud F (2010) The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer 46(16):2926–2935. doi: 10.1016/j.ejca.2010.07.033 PubMedCrossRefGoogle Scholar
  57. 57.
    Eigentler TK, Weide B, de Braud F, Spitaleri G, Romanini A, Pflugfelder A, Gonzalez-Iglesias R, Tasciotti A, Giovannoni L, Schwager K, Lovato V, Kaspar M, Trachsel E, Menssen HD, Neri D, Garbe C (2011) A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res 17(24):7732–7742. doi: 10.1158/1078-0432.CCR-11-1203 PubMedCrossRefGoogle Scholar
  58. 58.
    Spitaleri G, Berardi R, Pierantoni C, De Pas T, Noberasco C, Libbra C, Gonzalez-Iglesias R, Giovannoni L, Tasciotti A, Neri D, Menssen HD, de Braud F (2013) Phase I/II study of the tumour-targeting human monoclonal antibody-cytokine fusion protein L19-TNF in patients with advanced solid tumours. J Cancer Res Clinical Oncol 139(3):447–455. doi: 10.1007/s00432-012-1327-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Riccardo Danielli
    • 1
  • Roberto Patuzzo
    • 2
  • Pier Adelchi Ruffini
    • 3
  • Andrea Maurichi
    • 2
  • Leonardo Giovannoni
    • 4
  • Giuliano Elia
    • 4
  • Dario Neri
    • 5
  • Mario Santinami
    • 2
  1. 1.Medical Oncology and Immunotherapy, Azienda Ospedaliera Universitaria Senese, Istituto Toscano TumoriUniversity Hospital of SienaSienaItaly
  2. 2.Department of Surgery, Melanoma and Sarcoma UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  3. 3.Dompé S.p.A.MilanItaly
  4. 4.Philogen S.p.A.SienaItaly
  5. 5.Department of Chemistry and Applied BiosciencesETH ZürichZurichSwitzerland

Personalised recommendations