Skip to main content

Advertisement

Log in

Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individuals

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Disseminated or relapsed Ewing sarcoma (EwS) has remained fatal in the majority of patients. A promising approach to preventing relapse after conventional therapy is to establish tumor antigen-specific immune control. Efficient and specific T cell memory against the tumor depends on the expansion of rare T cells with native specificity against target antigens overexpressed by the tumor. Candidate antigens in EwS include six-transmembrane epithelial antigen of the prostate-1 (STEAP1), and the human cancer/testis antigens X-antigen family member 1 (XAGE1) and preferentially expressed antigen in melanoma (PRAME). Here, we screened normal donors and EwS patients for the presence of circulating T cells reactive with overlapping peptide libraries of these antigens by IFN-γ Elispot analysis. The majority of 22 healthy donors lacked detectable memory T cell responses against STEAP1, XAGE1 and PRAME. Moreover, ex vivo detection of T cells specific for these antigens in both blood and bone marrow were limited to a minority of EwS patients and required nonspecific T cell prestimulation. Cytotoxic T cells specific for the tumor-associated antigens were efficiently and reliably generated by in vitro priming using professional antigen-presenting cells and optimized cytokine stimulation; however, these T cells failed to interact with native antigen processed by target cells and with EwS cells expressing the antigen. We conclude that EwS-associated antigens fail to induce efficient T cell receptor (TCR)-mediated antitumor immune responses even under optimized conditions. Strategies based on TCR engineering could provide a more effective means to manipulating T cell immunity toward targeted elimination of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aAPC:

Artificial antigen-presenting cell

APC:

Antigen-presenting cell

BM:

Bone marrow

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

EwS:

Ewing sarcoma

HLA:

Human leukocyte antigen

IFN-γ:

Interferon-γ

IL:

Interleukin

MC:

Mononuclear cell

MHC:

Major histocompatibility complex

PB:

Peripheral blood

PD-1:

Programmed cell death 1

PepMix:

Peptide mixture

PRAME:

Preferentially expressed antigen in melanoma

RT-PCR:

Reverse transcriptase polymerase chain reaction

STEAP1:

Six-transmembrane epithelial antigen of the prostate-1

TCR:

T cell receptor

Treg cell:

T cell with regulatory phenotype

VZV-IE62:

Varicella-zoster virus immediate antigen 62

XAGE1:

X-antigen family member 1

References

  1. Stahl M, Ranft A, Paulussen M et al (2011) Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Ped Blood Cancer 57:549–553

    Article  Google Scholar 

  2. Paulussen M, Ahrens S, Burdach S et al (1998) Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European intergroup cooperative Ewing sarcoma studies. Ann Oncol 9:275–281

    Article  PubMed  CAS  Google Scholar 

  3. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023

    Article  PubMed  CAS  Google Scholar 

  4. Montagna D, Maccario R, Locatelli F et al (2006) Emergence of antitumor cytolytic T cells is associated with maintenance of hematologic remission in children with acute myeloid leukemia. Blood 108:3843–3850

    Article  PubMed  CAS  Google Scholar 

  5. Muller-Berghaus J, Ehlert K, Ugurel S, Umansky V, Bucur M, Schirrmacher V, Beckhove P, Schadendorf D (2006) Melanoma-reactive T cells in the bone marrow of melanoma patients: association with disease stage and disease duration. Cancer Res 66:5997–6001

    Article  PubMed  Google Scholar 

  6. Weide B, Zelba H, Derhovanessian E et al (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30:1835–1841

    Article  PubMed  CAS  Google Scholar 

  7. Feuerer M, Beckhove P, Bai L et al (2001) Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458

    Article  PubMed  CAS  Google Scholar 

  8. Schmitz-Winnenthal FH, Volk C, Z’Graggen K et al (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087

    Article  PubMed  CAS  Google Scholar 

  9. Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bollard CM, Gottschalk S, Leen AM et al (2007) Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110:2838–2845

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J, Andreesen R (2006) Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 24:5060–5069

    Article  PubMed  CAS  Google Scholar 

  12. Mackall CL, Rhee EH, Read EJ et al (2008) A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res 14:4850–4858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Evans CH, Liu F, Porter RM et al (2012) EWS-FLI-1-targeted cytotoxic T-cell killing of multiple tumor types belonging to the Ewing sarcoma family of tumors. Clin Cancer Res 18:5341–5351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hubert RS, Vivanco I, Chen E et al (1999) STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA 96:14523–14528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Staege MS, Hutter C, Neumann I et al (2004) DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64:8213–8221

    Article  PubMed  CAS  Google Scholar 

  16. Cheung IY, Feng Y, Danis K, Shukla N, Meyers P, Ladanyi M, Cheung NK (2007) Novel markers of subclinical disease for Ewing family tumors from gene expression profiling. Clin Cancer Res 13:6978–6983

    Article  PubMed  CAS  Google Scholar 

  17. Rodeberg DA, Nuss RA, Elsawa SF, Celis E (2005) Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor cells by peptide antigen-induced cytotoxic T lymphocytes. Clin Cancer Res 11:4545–4552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Liu XF, Helman LJ, Yeung C, Bera TK, Lee B, Pastan I (2000) XAGE-1, a new gene that is frequently expressed in Ewing’s sarcoma. Cancer Res 60:4752–4755

    PubMed  CAS  Google Scholar 

  19. Mahlendorf DE, Staege MS (2013) Characterization of Ewing sarcoma associated cancer/testis antigens. Cancer Biol Ther 14:254–261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Ikeda H, Lethe B, Lehmann F et al (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:199–208

    Article  PubMed  CAS  Google Scholar 

  21. Quintarelli C, Dotti G, De Angelis B et al (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112:1876–1885

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Weber G, Gerdemann U, Caruana I et al (2013) Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 27:1538–1547

    Article  PubMed  CAS  Google Scholar 

  23. Alves PMS, Faure O, Graff-Dubois S et al (2006) STEAP, a prostate tumor antigen, is a target of human CD8(+) T cells. Cancer Immunol Immunother 55:1515–1523

    Article  PubMed  CAS  Google Scholar 

  24. Machlenkin A, Paz A, Haim EB et al (2005) Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy. Cancer Res 65:6435–6442

    Article  PubMed  CAS  Google Scholar 

  25. Altvater B, Pscherer S, Landmeier S, Kailayangiri S, Savoldo B, Juergens H, Rossig C (2012) Activated human gammadelta T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol Immunother 61:385–396

    Article  PubMed  CAS  Google Scholar 

  26. Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, Wang C, Davis MM (2003) Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 111:639–647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Grunewald TG, Ranft A, Esposito I et al (2012) High STEAP1 expression is associated with improved outcome of Ewing’s sarcoma patients. Ann Oncol 23:2185–2190

    Article  PubMed  CAS  Google Scholar 

  28. Grunewald TG, Diebold I, Esposito I et al (2012) STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol Cancer Res 10:52–65

    Article  PubMed  CAS  Google Scholar 

  29. Rezvani K, Grube M, Brenchley JM et al (2003) Functional leukemia-associated antigen-specific memory CD8(+) T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 102:2892–2900

    Article  PubMed  CAS  Google Scholar 

  30. Rezvani K, Yong AS, Tawab A et al (2009) Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 113:2245–2255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S, Nagorsen D, Keilholz U (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137

    Article  PubMed  CAS  Google Scholar 

  32. Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al (2009) High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 113:2238–2244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Coughlin CM, Fleming MD, Carroll RG et al (2006) Immunosurveillance and survivin-specific T-cell immunity in children with high-risk neuroblastoma. J Clin Oncol 24:5725–5734

    Article  PubMed  CAS  Google Scholar 

  34. Sommerfeldt N, Schutz F, Sohn C, Forster J, Schirrmacher V, Beckhove P (2006) The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res 66:8258–8265

    Article  PubMed  CAS  Google Scholar 

  35. De Angulo G, Hernandez M, Morales-Arias J, Herzog CE, Anderson P, Wolff J, Kleinerman ES (2007) Early lymphocyte recovery as a prognostic indicator for high-risk Ewing sarcoma. J Pediatr Hematol Oncol 29:48–52

    Article  PubMed  Google Scholar 

  36. Zhang H, Merchant MS, Chua KS et al (2003) Tumor expression of 4-1BB ligand sustains tumor lytic T cells. Cancer Biol Ther 2:579–586

    PubMed  CAS  Google Scholar 

  37. Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Khazaie K, Prifti S, Beckhove P, Griesbach A, Russell S, Collins M, Schirrmacher V (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci U S A 91:7430–7434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, Diel IJ, Schirrmacher V (2001) Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 92:96–105

    Article  PubMed  CAS  Google Scholar 

  40. Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157

    Article  PubMed  CAS  Google Scholar 

  41. Mazo IB, Honczarenko M, Leung H et al (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22:259–270

    Article  PubMed  CAS  Google Scholar 

  42. Zhang X, Dong H, Lin W et al (2006) Human bone marrow: a reservoir for “enhanced effector memory” CD8+ T cells with potent recall function. J Immunol 177:6730–6737

    Article  PubMed  CAS  Google Scholar 

  43. Berghuis D, de Hooge AS, Santos SJ et al (2009) Reduced human leukocyte antigen expression in advanced-stage Ewing sarcoma: implications for immune recognition. J Pathol 218:222–231

    Article  PubMed  CAS  Google Scholar 

  44. Brinkrolf P, Landmeier S, Altvater B et al (2009) A high proportion of bone marrow T cells with regulatory phenotype (CD4 + CD25hiFoxP3 +) in Ewing sarcoma patients is associated with metastatic disease. Int J Cancer 125:879–886

    Article  PubMed  CAS  Google Scholar 

  45. Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN, Mackall CL (2013) Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood 122:1105–1113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF (2009) Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 114:1528–1536

    Article  PubMed  CAS  Google Scholar 

  48. Zhang L, Gajewski TF, Kline J (2009) PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114:1545–1552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Zhou Q, Munger ME, Highfill SL et al (2010) Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 116:2484–2493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Gerdemann U, Katari U, Christin AS et al (2011) Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol Ther 19:2258–2268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Griffioen M, Kessler JH, Borghi M et al (2006) Detection and functional analysis of CD8(+) T cells specific for PRAME: a target for T-cell therapy. Clin Cancer Res 12:3130–3136

    Article  PubMed  CAS  Google Scholar 

  52. Quintarelli C, Dotti G, Hasan ST et al (2011) High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 117:3353–3362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Weber G, Karbach J, Kuci S et al (2009) WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation. Leukemia 23:1634–1642

    Article  PubMed  CAS  Google Scholar 

  54. Thiel U, Pirson S, Muller-Spahn C, Conrad H, Busch DH, Bernhard H, Burdach S, Richter GH (2011) Specific recognition and inhibition of Ewing tumour growth by antigen-specific allo-restricted cytotoxic T cells. Br J Cancer 104:948–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Sadovnikova E, Stauss HJ (1996) Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc Natl Acad Sci U S A 93:13114–13118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Amir AL, van der Steen DM, van Loenen MM et al (2011) PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin Cancer Res 17:5615–5625

    Article  PubMed  CAS  Google Scholar 

  57. Linette GP, Stadtmauer EA, Maus MV et al (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122:863–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Morgan RA, Chinnasamy N, Abate-Daga D et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Parkhurst MR, Yang JC, Langan RC et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19:620–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Spranger S, Jeremias I, Wilde S et al (2012) TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood 119:3440–3449

    Article  PubMed  CAS  Google Scholar 

  61. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by pilot funding by the University of Muenster Faculty of Medicine “Innovative Medizinische Forschung (IMF)” program (to Christiane Chen) and by grant Nr. 2010.016.1 from Wilhelm Sander-Stiftung (to Claudia Rossig).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Approval for using tumor, BM and/or PB samples from patients and healthy donors was obtained from the University of Muenster Ethical Board, and informed consent was obtained in accordance with the 1964 Declaration of Helsinki and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Rossig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altvater, B., Kailayangiri, S., Theimann, N. et al. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individuals. Cancer Immunol Immunother 63, 1047–1060 (2014). https://doi.org/10.1007/s00262-014-1574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1574-3

Keywords

Navigation