Skip to main content

Advertisement

Log in

Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is characterized by a malignant proliferation of plasma cells in the bone marrow with associated organ damage. Although the prognosis of MM has improved recently, the disease remains incurable for the large majority of patients. The eradication of residual disease in the bone marrow is a main target on the road toward cure. Immune cells play a role in the control of cancer and can be tools to attack residual MM cells. However, the myeloma-associated immune deficiency is a major hurdle to immunotherapy. We evaluated ex vivo the effects of low doses of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide on several immune cell types from MM patients after autologous stem cell transplantation and with low tumor burden. We observed that these drugs increased CD4+ and CD8+ T-cell proliferation and cytokine production, enhanced the lytic capacity of cytotoxic T lymphocytes and reduced the suppressive effects of regulatory T cells on CD8+ T-cell responses. In addition, we found that functional dendritic cells (DCs) can be generated from mononuclear cells from MM patients. The presence of IMiDs improved the quality of antigen-specific T cells induced or expanded by these DCs as evidenced by a higher degree of T-cell polyfunctionality. Our results provide a rationale for the design of early phase clinical studies to assess the efficacy of DC-based immunotherapy in combination with posttransplant maintenance treatment with IMiDs in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4-1BBL:

4-1BB ligand

ASCT:

Autologous stem cell transplantation

caTLR4:

Constitutively active Toll-like receptor 4

CD40L:

CD40 ligand

CM-DC:

Cytokine cocktail matured dendritic cell

CR:

Complete response

DC:

Dendritic cell

Flu-NP:

Influenza nuclear protein

iDC:

Immature dendritic cell

IDO:

Indoleamine 2,3-dioxygenase

IMiD:

Immunomodulatory drug

MDSC:

Myeloid-derived suppressor cell

MM:

Multiple myeloma

NAC:

Non-adherent cell

NK:

Natural killer

PBMC:

Peripheral blood mononuclear cell

Teff:

Effector T cell

Treg:

Regulatory T cell

VGPR:

Very good partial remission

References

  1. Schots R (2011) Recent advances in myeloma treatment. Transfus Apheresis Sci 44:223–229

    Article  CAS  Google Scholar 

  2. Munshi NC, Anderson KC (2013) New strategies in the treatment of multiple myeloma. Clin Cancer Res 19:3337–3344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Munshi NC, Anderson KC, Bergsagel PL et al (2011) Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 117:4696–4700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Brenner H, Gondos A, Pulte D (2008) Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 111:2521–2526

    Article  PubMed  CAS  Google Scholar 

  5. Reichardt VL, Okada CY, Liso A et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411–2419

    PubMed  CAS  Google Scholar 

  6. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S et al (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 6:621–627

    Article  PubMed  CAS  Google Scholar 

  7. Rosenblatt J, Avivi I, Vasir B et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19:3640–3648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Hobo W, Strobbe L, Maas F et al (2013) Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 62:1381–1392

    Article  PubMed  CAS  Google Scholar 

  9. Meehan KR, Wu J, Bengtson E et al (2007) Early recovery of aggressive cytotoxic cells and improved immune resurgence with post-transplant immunotherapy for multiple myeloma. Bone Marrow Transplant 39:695–703

    Article  PubMed  CAS  Google Scholar 

  10. Rapoport AP, Aqui NA, Stadtmauer EA et al (2011) Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 117:788–797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Meehan KR, Talebian L, Tosteson TD et al (2013) Adoptive cellular therapy using cells enriched for NKG2D+ CD3+ CD8+ T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant 19:129–137

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nair JR, Carlson LM, Koorella C et al (2011) CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol 187:1243–1253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Okunishi K, Dohi M, Nakagome K et al (2005) A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 175:4745–4753

    Article  PubMed  CAS  Google Scholar 

  14. Beyer M, Kochanek M, Giese T et al (2006) In vivo peripheral expansion of naive CD4+ CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949

    Article  PubMed  CAS  Google Scholar 

  15. Brimnes MK, Vangsted AJ, Knudsen LM et al (2010) Increased level of both CD4+ FOXP3+ regulatory T cells and CD14+ HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72:540–547

    Article  PubMed  CAS  Google Scholar 

  16. Feyler S, von Lilienfeld-Toal M, Jarmin S et al (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144:686–695

    Article  PubMed  Google Scholar 

  17. Van Valckenborgh E, Schouppe E, Movahedi K et al (2012) Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26:2424–2428

    Article  PubMed  Google Scholar 

  18. Görgün GT, Whitehill G, Anderson JL et al (2013) Tumor promoting immune suppressive myeloid derived suppressor cells in multiple myeloma microenvironment. Blood 121:2975–2987

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramachandran IR, Martner A, Pisklakova A et al (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190:3815–3823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Lu L, Payvandi F, Wu L et al (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77:78–86

    Article  PubMed  CAS  Google Scholar 

  21. Mitsiades N (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530

    Article  PubMed  CAS  Google Scholar 

  22. LeBlanc R, Hideshima T, Catley LP et al (2004) Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103:1787–1790

    Article  PubMed  CAS  Google Scholar 

  23. Xu Y, Li J, Ferguson GD et al (2009) Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood 114:338–345

    Article  PubMed  CAS  Google Scholar 

  24. Lu G, Middleton RE, Sun H et al (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Lopez-Girona A, Mendy D, Ito T et al (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wilgenhof S, Van Nuffel AMT, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456

    Article  PubMed  CAS  Google Scholar 

  27. Van Nuffel AMT, Benteyn D, Wilgenhof S et al (2012) Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 61:1033–1043

    Article  PubMed  Google Scholar 

  28. Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375

    Article  PubMed  CAS  Google Scholar 

  29. Wilgenhof S, Pierret L, Corthals J et al (2011) Restoration of tumor equilibrium after immunotherapy for advanced melanoma: three illustrative cases. Melanoma Res 21:152–159

    Article  PubMed  Google Scholar 

  30. De Keersmaecker B, Heirman C, Corthals J et al (2011) The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 89:989–999

    Article  PubMed  Google Scholar 

  31. Zhang L, Götz M, Hofmann S, Greiner J (2012) Immunogenic targets for specific immunotherapy in multiple myeloma. Clin Dev Immunol 2012:820394

    PubMed  PubMed Central  Google Scholar 

  32. De Keersmaecker B, Allard SD, Lacor P et al (2012) Expansion of polyfunctional HIV-specific T cells upon stimulation with mRNA electroporated dendritic cells in the presence of immunomodulatory drugs. J Virol 86:9351–9360

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan J, Gnjatic S, Li H et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105:20410–20415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Aranda F, Llopiz D, Díaz-Valdés N et al (2011) Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res 71:3214–3224

    Article  PubMed  CAS  Google Scholar 

  35. Ding Z-C, Huang L, Blazar BR et al (2012) Polyfunctional CD4+ T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood 120:2229–2239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Galustian C, Meyer B, Labarthe M-C et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045

    Article  PubMed  CAS  Google Scholar 

  37. Vasquez-Dunddel D, Pan F, Zeng Q et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Qin A, Cai W, Pan T et al (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87:1477–1490

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Mougiakakos D, Jitschin R, von Bahr L et al (2012) Immunosuppressive CD14+ HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia 27:377–388

    Article  PubMed  Google Scholar 

  40. Poschke I, Mougiakakos D, Hansson J et al (2010) Immature immunosuppressive CD14+ HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345

    Article  PubMed  CAS  Google Scholar 

  41. Kotsakis A, Harasymczuk M, Schilling B et al (2012) Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods 381:14–22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Schilling B, Sucker A, Griewank K et al (2013) Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer 133:1653–1663

    Article  PubMed  CAS  Google Scholar 

  43. Duffy A, Zhao F, Haile L et al (2013) Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother 62:299–307

    Article  PubMed  CAS  Google Scholar 

  44. Serafini P, Meckel K, Kelso M et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Bonehill A, Tuyaerts S, Van Nuffel AMT et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180

    Article  PubMed  CAS  Google Scholar 

  46. Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693

    Article  PubMed  CAS  Google Scholar 

  47. Maecker B, Anderson KS, von Bergwelt-Baildon MS et al (2003) Viral antigen-specific CD8+ T-cell responses are impaired in multiple myeloma. Br J Haematol 121:842–848

    Article  PubMed  Google Scholar 

  48. Sakamaki I, Kwak LW, Cha S-C et al (2014) Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia 28:329–337

    Article  PubMed  CAS  Google Scholar 

  49. Chen N, Lau H, Kong L et al (2007) Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 47:1466–1475

    Article  PubMed  CAS  Google Scholar 

  50. Richter J, Neparidze N, Zhang L et al (2013) Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121:423–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bilal Khan, Chiraz Mahmoud, Steven Heynderickx, Angelo Willems, Elsy Vaeremans, Petra Roman and Xavier Debaere for excellent technical assistance and Sarah Maenhout for her advice regarding the MDSC suppression assays. This study was supported by the Stichting Tegen Kanker, the International Myeloma Foundation (Brian D Novis junior research award), the King Baudouin Foundation (Fund Catharina Weekers) and the Wetenschappelijk Fonds Willy Gepts (Universitair Ziekenhuis Brussel). Parts of this work were realized with a research grant Emmanuel van de Schueren of the Vlaamse Liga Tegen Kanker.

Conflict of interest

TriMix DCs are the topic of a current patent application (WO2009/034172). Kris Thielemans is mentioned as inventor of this application. None of the authors involved in this study receives any form of support or remuneration related to this platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda De Keersmaecker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Keersmaecker, B., Fostier, K., Corthals, J. et al. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother 63, 1023–1036 (2014). https://doi.org/10.1007/s00262-014-1571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1571-6

Keywords

Navigation