Cancer Immunology, Immunotherapy

, Volume 63, Issue 6, pp 627–641 | Cite as

Immunomodulatory activity of commonly used drugs on Fc-receptor-mediated human natural killer cell activation

  • Jakob Theorell
  • Anna-Lena Gustavsson
  • Bianca Tesi
  • Kristmundur Sigmundsson
  • Hans-Gustaf Ljunggren
  • Thomas Lundbäck
  • Yenan T. Bryceson
Original Article

Abstract

Natural killer (NK) cells mediate defense against neoplastic as well as infected cells. Yet, how their effector functions are affected by the large variety of pharmacological compounds commonly in use has not been investigated systematically. Here, we screened 1,200 in-use or previously approved drugs for their biological effect on freshly isolated human peripheral blood-derived NK cells. Mimicking antibody-dependent cellular cytotoxicity (ADCC), known to be important in antibody-based immunotherapies against, e.g., human malignancies, the cells were stimulated by Fc-receptor (CD16) engagement. Cellular responses were assessed by flow cytometry. Fifty-six compounds that significantly inhibited and twelve that enhanced one or more of the readouts of adhesion, exocytosis, and chemokine production were identified and confirmed as hits. Among the confirmed inhibitors, 80 % could be assigned to one of seven major pharmacological classes. These classes were β2-adrenergic agonists, prostaglandins, phosphodiesterase-4 inhibitors, Ca2+-channel blockers, histamine H1-receptor antagonists, serotonin/dopamine receptor antagonists, and topoisomerase inhibitors that displayed distinct inhibitory patterns on NK cell responses. Among observed enhancers, interestingly, two ergosterol synthesis inhibitors were identified that specifically promoted exocytosis. In summary, these results provide a comprehensive knowledge base of the effect known drugs have on NK cells. More specifically, they provide an overview of drugs that may modulate NK cell-mediated ADCC in the context of clinical immunotherapies.

Keywords

Humans Natural killer cells Cytotoxicity CD107a Small molecule screening Prestwick Chemical Library 

Abbreviations

ADCC

Antibody-dependent cellular cytotoxicity

DMSO

Dimethylsulfoxide

FBS

Fetal bovine serum

FSC-H

Forward scatter height

ITAM

Immunoreceptor tyrosine-based activation motif

IFN

Interferon

LFA

Leukocyte functional antigen

MIP

Macrophage-inducible protein

NK

Natural killer cells

PBMC

Peripheral blood mononuclear cells

PBS

Phosphate-buffered saline

PDE

Phosphodiesterase

SSC-H

Side scatter height

TNF

Tumor necrosis factor

Supplementary material

262_2014_1539_MOESM1_ESM.pdf (5.7 mb)
Supplementary material 1 (PDF 5,833 kb)

References

  1. 1.
    Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510. doi:10.1038/ni1582 PubMedCrossRefGoogle Scholar
  2. 2.
    Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952. doi:10.1038/nri1983 PubMedCrossRefGoogle Scholar
  3. 3.
    Wood SM, Ljunggren H-G, Bryceson YT (2011) Insights into NK cell biology from human genetics and disease associations. Cell Mol Life Sci 68:3479–3493. doi:10.1007/s00018-011-0799-y PubMedCrossRefGoogle Scholar
  4. 4.
    Flodström-Tullberg M, Bryceson YT, Shi F-D et al (2009) Natural killer cells in human autoimmunity. Curr Opin Immunol 21:634–640. doi:10.1016/j.coi.2009.09.012 PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy WJ, Parham P, Miller JS (2012) NK cells–from bench to clinic. Biol Blood Marrow Transplant 18:S2–S7. doi:10.1016/j.bbmt.2011.10.033 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ljunggren H-G, Malmberg K-J (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339. doi:10.1038/nri2073 PubMedCrossRefGoogle Scholar
  7. 7.
    Huang R, Southall N, Wang Y et al (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3:80ps16. doi:10.1126/scitranslmed.3001862 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. doi:10.1038/nrd2199 PubMedCrossRefGoogle Scholar
  9. 9.
    Fabian MA, Biggs WH, Treiber DK et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336. doi:10.1038/nbt1068 PubMedCrossRefGoogle Scholar
  10. 10.
    Chiang SCC, Theorell J, Entesarian M et al (2013) Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121:1345–1356. doi:10.1182/blood-2012-07-442558 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73. doi:10.1177/108705719900400206 PubMedCrossRefGoogle Scholar
  12. 12.
    Birmingham A, Selfors LM, Forster T et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575. doi:10.1038/nmeth.1351 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zhang XD, Yang XC, Chung N et al (2006) Robust statistical methods for hit selection in RNA interference high-throughput screening experiments. Pharmacogenomics 7:299–309. doi:10.2217/14622416.7.3.299 PubMedCrossRefGoogle Scholar
  14. 14.
    Bender A, Mussa HY, Glen RC, Reiling S (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44:1708–1718PubMedCrossRefGoogle Scholar
  15. 15.
    Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170. doi:10.1016/j.jmgm.2010.05.008 PubMedCrossRefGoogle Scholar
  16. 16.
    Bryceson Y, Ljunggren H, Long E (2009) Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114:2657–2666. doi:10.1182/blood-2009-01-201632 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Theorell J, Schlums H, Chiang SCC et al (2011) Sensitive and viable quantification of inside-out signals for LFA-1 activation in human cytotoxic lymphocytes by flow cytometry. J Immunol Methods 366:106–118. doi:10.1016/j.jim.2011.01.014 PubMedCrossRefGoogle Scholar
  18. 18.
    Bryceson YT, March ME, Barber DF et al (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012. doi:10.1084/jem.20051143 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fauriat C, Long EO, Ljunggren H-G, Bryceson YT (2010) Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115:2167–2176. doi:10.1182/blood-2009-08-238469 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    De Maria A, Bozzano F, Cantoni C, Moretta L (2011) Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16 + NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci USA 108:728–732PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Florian AE, Lepensky CK, Kwon O et al (2013) Flow cytometry enables a high-throughput homogeneous fluorescent antibody-binding assay for cytotoxic T cell lytic granule exocytosis. J Biomol Screen 18:420–429. doi:10.1177/1087057112466697 PubMedCrossRefGoogle Scholar
  22. 22.
    Hellstrand K, Hermodsson S, Strannegård Ö (1985) Evidence for a β-adrenoreceptor-mediated regulation of human natural killer cells. J Immunol 134:4095–4099PubMedGoogle Scholar
  23. 23.
    Borger P, Hoekstra Y, Esselink MT et al (1998) Beta-adrenoceptor-mediated inhibition of IFN-gamma, IL-3, and GM-CSF mRNA accumulation in activated human T lymphocytes is solely mediated by the beta2-adrenoceptor subtype. Am J Respir Cell Mol Biol 19:1044–1549CrossRefGoogle Scholar
  24. 24.
    Lanefelt F, Ullberg M, Jondal M, Fredholm BB (1983) PGE1 and prostacyclin suppression of NK-cell mediated cytotoxicity and its relation to cyclic AMP. Med Biol 61:324–330PubMedGoogle Scholar
  25. 25.
    Schafer PH, Parton A, Gandhi AK et al (2010) Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol 159:842–855. doi:10.1111/j.1476-5381.2009.00559.x PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Baker JG (2010) The selectivity of b -adrenoceptor agonists at human b 1-, b 2-and b 3-adrenoceptors. Br J Pharmacol 160:1048–1061. doi:10.1111/j.1476-5381.2010.00754.x PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Brudvik KW, Taskén K (2012) Modulation of T cell immune functions by the prostaglandin E(2) - cAMP pathway in chronic inflammatory states. Br J Pharmacol 166:411–419. doi:10.1111/j.1476-5381.2011.01800.x PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Rivera-Baltanas T, Olivares JM, Calado-Otero M et al (2012) Serotonin transporter clustering in blood lymphocytes as a putative biomarker of therapeutic efficacy in major depressive disorder. J Affect Disord 137:46–55. doi:10.1016/j.jad.2011.12.041 PubMedCrossRefGoogle Scholar
  29. 29.
    Xiao L, Eneroth P (1996) Tricyclic antidepressants inhibit human natural killer cells. Toxicol Appl Pharmacol 137:157–162. doi:10.1006/taap.1996.0068 PubMedCrossRefGoogle Scholar
  30. 30.
    McKenna F, McLaughlin PJ, Lewis BJ et al (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132:34–40PubMedCrossRefGoogle Scholar
  31. 31.
    Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216:8–19. doi:10.1016/j.jneuroim.2009.07.018 PubMedCrossRefGoogle Scholar
  32. 32.
    Jaszczyszyn A, Gąsiorowski K, Świątek P et al (2012) Chemical structure of phenothiazines and their biological activity. Pharmacol Rep 64:16–23PubMedCrossRefGoogle Scholar
  33. 33.
    Hellstrand K, Hermodsson S (1986) Histamine H2-receptor-mediated regulation of human natural killer cell activity. J Immunol 137:656–660PubMedGoogle Scholar
  34. 34.
    Damaj BB, Becerra CB, Esber HJ et al (2007) Functional expression of H4 histamine receptor in human natural killer cells, monocytes, and dendritic cells. J Immunol 179:7907–7915PubMedCrossRefGoogle Scholar
  35. 35.
    Maul-Pavicic A (2011) ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci USA 108:3324–3329. doi:10.1073/pnas.1013285108 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Solovera J, Alvarez-Mon M (1987) Inhibition of human natural killer (NK) activity by calcium channel modulators and a calmodulin antagonist. J Immunol 139:876–880PubMedGoogle Scholar
  37. 37.
    Liu J, Farmer JD, Lane WS et al (1991) Calcineurin is a common target of Cyclophilin-Cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815PubMedCrossRefGoogle Scholar
  38. 38.
    Morteau O, Blundell S, Chakera A et al (2010) Renal transplant immunosuppression impairs natural killer cell function in vitro and in vivo. PLoS ONE 5:e13294. doi:10.1371/journal.pone.0013294 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Liu S-Y, Hwang B-D, Haruna M et al (1989) Podophyllotoxin analogs: effects on DNA topoisomerase II, tubulin POLYMERIZATION, human tumor KB Cells, and their VP-16-Resistand variants. Mol Pharmacol 36:78–82PubMedGoogle Scholar
  40. 40.
    Frega A, Stentella P, Renzi F et al (1997) Assesment of self application of four topical agents on genital warts in women. J Eur Acad Dermatol Venereol 8:112–115. doi:10.1111/j.1468-3083.1997.tb00198.x CrossRefGoogle Scholar
  41. 41.
    Iwatani W, Arika T, Yamaguchi H (1993) Two mechanisms of butenafine action in Candida albicans. Antimicrob Agents Chemother 37:785–788PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Mingeot-Leclercq M-P, Gallet X, Flore C et al (2001) Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob Agents Chemother 45:3347–3354. doi:10.1128/AAC.45.12.3347 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Goday JJ, González-Güemes M, Yanguas I et al (1998) Allergic contact dermatitis from naftifine in a child without cross-reaction to terbinafine. J Eur Acad Dermatol Venereol 11:72–73PubMedCrossRefGoogle Scholar
  44. 44.
    Carbone T, Nasorri F, Pennino D et al (2010) CD56highCD16-CD62L- NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J Immunol 184:1102–1110. doi:10.4049/jimmunol.0902518 PubMedCrossRefGoogle Scholar
  45. 45.
    Cavani A, De Pità O, Girolomoni G (2007) New aspects of the molecular basis of contact allergy. Curr Opin Allergy Clin Immunol 7:404–408. doi:10.1097/ACI.0b013e3282ef6923 PubMedCrossRefGoogle Scholar
  46. 46.
    Bodenmiller B, Zunder ER, Finck R et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30:858–867. doi:10.1038/nbt.2317 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33:323–332. doi:10.1016/j.it.2012.02.010 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jakob Theorell
    • 1
  • Anna-Lena Gustavsson
    • 2
  • Bianca Tesi
    • 3
    • 4
  • Kristmundur Sigmundsson
    • 2
  • Hans-Gustaf Ljunggren
    • 1
  • Thomas Lundbäck
    • 2
  • Yenan T. Bryceson
    • 1
    • 5
  1. 1.Department of Medicine, Centre for Infectious Medicine, F59, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden
  2. 2.Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
  3. 3.Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
  4. 4.Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
  5. 5.Broegelmann Research Laboratory, Institute of Clinical SciencesUniversity of BergenBergenNorway

Personalised recommendations