Skip to main content

Advertisement

Log in

Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8+ T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8+ T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1+ vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  2. Rezanejad H, Matin MM (2012) Induced pluripotent stem cells: progress and future perspectives in the stem cell world. Cell Reprogram 14:459–470

    PubMed  CAS  Google Scholar 

  3. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533

    Article  PubMed  CAS  Google Scholar 

  4. Trounson A, Shepard KA, DeWitt ND (2012) Human disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22:509–516

    Article  PubMed  CAS  Google Scholar 

  5. Watarai H, Yamada D, Fujii S, Taniguchi M, Koseki H (2012) Induced pluripotency as a potential path towards iNKT cell-mediated cancer immunotherapy. Int J Hematol 95:624–631

    Article  PubMed  CAS  Google Scholar 

  6. Senju S, Haruta M, Matsumura K, Matsunaga Y, Fukushima S et al (2011) Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther 18:874–883

    Article  PubMed  CAS  Google Scholar 

  7. Li Y, Zeng H, Xu RH, Liu B, Li Z (2009) Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells 27:3103–3111

    PubMed  CAS  Google Scholar 

  8. Aly HA (2012) Cancer therapy and vaccination. J Immunol Methods 382:1–23

    Article  PubMed  CAS  Google Scholar 

  9. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother 61:289–293

    Article  PubMed  Google Scholar 

  11. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  12. Marx J (2000) Tumor angiogenesis gene expression patterns identified. Science 289:1121–1122

    Article  PubMed  CAS  Google Scholar 

  13. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  PubMed  CAS  Google Scholar 

  14. Dong Y, Quan J, Ibrahim R, Berzofsky JA, Khleif SN (2006) Identification of H-2Db-specific CD8+ T-cell epitopes from mouse VEGFR2 that can inhibit angiogenesis and tumor growth. J Immunother 29:32–40

    Article  PubMed  CAS  Google Scholar 

  15. Wei YQ, Wang QR, Zhao X, Yang L, Tian L et al (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6:1160–1166

    Article  PubMed  CAS  Google Scholar 

  16. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506

    Article  PubMed  Google Scholar 

  17. Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD et al (2003) Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63:6378–6386

    PubMed  CAS  Google Scholar 

  18. Tatsumi T, Gambotto A, Robbins PD, Storkus WJ (2002) Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Res 62:5853–5858

    PubMed  CAS  Google Scholar 

  19. Montesano R, Pepper MS, Möhle-Steinlein U, Risau W, Wagner EF et al (1990) Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445

    Article  PubMed  CAS  Google Scholar 

  20. Nagasaki E, Takahara A, Koido S, Sagawa Y, Aiba K et al (2010) Combined treatment with dendritic cells and 5-fluorouracil elicits augmented NK cell-mediated antitumor activity through the tumor necrosis factor-alpha pathway. J Immunother 33:467–474

    Article  PubMed  CAS  Google Scholar 

  21. Homma S, Komita H, Sagawa Y, Ohno T, Toda G (2005) Antitumour activity mediated by CD4 + cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12. Immunology 115:451–461

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Haase VH (2009) Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int 76:492–499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  PubMed  CAS  Google Scholar 

  24. Lyden D, Hattori K, Dias S, Costa C, Blaikie P et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  PubMed  CAS  Google Scholar 

  25. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K et al (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    Article  PubMed  CAS  Google Scholar 

  26. Verheul HM, Voest EE, Schlingemann RO (2004) Are tumours angiogenesis-dependent? J Pathol 202:5–13

    Article  PubMed  CAS  Google Scholar 

  27. Carr BI (2002) Hepatic artery chemoembolization for advanced stage HCC: experience of 650 patients. Hepatogastroenterology 49:79–86

    PubMed  CAS  Google Scholar 

  28. Taeger J, Moser C, Hellerbrand C, Mycielska ME, Glockzin G et al (2011) Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol Cancer Ther 10:2157–2167

    Article  PubMed  CAS  Google Scholar 

  29. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  PubMed  CAS  Google Scholar 

  30. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Article  PubMed  CAS  Google Scholar 

  32. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  33. Kaplan CD, Krüger JA, Zhou H, Luo Y, Xiang R et al (2006) A novel DNA vaccine encoding PDGFRbeta suppresses growth and dissemination of murine colon, lung and breast carcinoma. Vaccine 24:6994–7002

    Article  PubMed  CAS  Google Scholar 

  34. Bagley RG, Weber W, Rouleau C, Teicher BA (2005) Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy. Cancer Res 65:9741–9750

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Specific Research (C) and Grant-in-Aid for Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the foundation of Cancer Research, Mitsui Life Social Welfare Foundation, Grant-in-Aid of the Japan Medical Association, and Takeda Science Foundation. The founders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadamu Homma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koido, S., Ito, M., Sagawa, Y. et al. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells. Cancer Immunol Immunother 63, 459–468 (2014). https://doi.org/10.1007/s00262-014-1531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1531-1

Keywords

Navigation