Skip to main content

Advertisement

Log in

P53, hTERT, WT-1, and VEGFR2 are the most suitable targets for cancer vaccine therapy in HLA-A24 positive pancreatic adenocarcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer vaccine therapy is one of the most attractive therapies as a new treatment procedure for pancreatic adenocarcinoma. Recent technical advances have enabled the identification of cytotoxic T lymphocyte (CTL) epitopes in various tumor-associated antigens (TAAs). However, little is known about which TAA and its epitope are the most immunogenic and useful for a cancer vaccine for pancreatic adenocarcinoma. We examined the expression of 17 kinds of TAA in 9 pancreatic cancer cell lines and 12 pancreatic cancer tissues. CTL responses to 23 epitopes derived from these TAAs were analyzed using enzyme-linked immunospot (ELISPOT), CTL, and tetramer assays in 41 patients, and factors affecting the immune responses were investigated. All TAAs were frequently expressed in pancreatic adenocarcinoma cells, except for adenocarcinoma antigens recognized by T cells 1, melanoma-associated antigen (MAGE)-A1, and MAGE-A3. Among the epitopes recognized by CTLs in more than two patients in the ELISPOT assay, 6 epitopes derived from 5 TAAs, namely, MAGE-A3, p53, human telomerase reverse transcriptase (hTERT), Wilms tumor (WT)-1, and vascular endothelial growth factor receptor (VEGFR)2, could induce specific CTLs that showed cytotoxicity against pancreatic cancer cell lines. The frequency of lymphocyte subsets correlated well with TAA-specific immune response. Overall survival was significantly longer in patients with TAA-specific CTL responses than in those without. P53, hTERT, WT-1, and VEGFR2 were shown to be attractive targets for immunotherapy in patients with pancreatic adenocarcinoma, and the induction of TAA-specific CTLs may improve the prognosis of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocyte

TAA:

Tumor-associated antigen

ELISPOT:

Enzyme-linked immunospot

MAGE:

Melanoma-associated antigen

hTERT:

Human telomerase reverse transcriptase

WT-1:

Wilms tumor-1

VEGFR:

Vascular endothelial growth factor receptor

PBMC:

Peripheral blood mononuclear cells

PCR:

Polymerase chain reaction

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

  3. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S (2001) Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 97:2903–2907

    Article  PubMed  CAS  Google Scholar 

  5. Ferries E, Connan F, Pages F, Gaston J, Hagnere AM, Vieillefond A, Thiounn N, Guillet J, Choppin J (2001) Identification of p53 peptides recognized by CD8(+) T lymphocytes from patients with bladder cancer. Hum Immunol 62:791–798

    Article  PubMed  CAS  Google Scholar 

  6. Fujie T, Tahara K, Tanaka F, Mori M, Takesako K, Akiyoshi T (1999) A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor cytotoxic T lymphocytes. Int J Cancer 80:169–172

    Article  PubMed  CAS  Google Scholar 

  7. Gomi S, Nakao M, Niiya F, Imamura Y, Kawano K, Nishizaka S, Hayashi A, Sobao Y, Oizumi K, Itoh K (1999) A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J Immunol 163:4994–5004

    PubMed  CAS  Google Scholar 

  8. Harashima N, Tanaka K, Sasatomi T, Shimizu K, Miyagi Y, Yamada A, Tamura M, Yamana H, Itoh K, Shichijo S (2001) Recognition of the Lck tyrosine kinase as a tumor antigen by cytotoxic T lymphocytes of cancer patients with distant metastases. Eur J Immunol 31:323–332

    Article  PubMed  CAS  Google Scholar 

  9. Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, Yoda J, Ikeda H, Hirata K, Yamanaka N, Sato N (2002) An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 8:1731–1739

    PubMed  CAS  Google Scholar 

  10. Ishizaki H, Tsunoda T, Wada S, Yamauchi M, Shibuya M, Tahara H (2006) Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clin Cancer Res 12:5841–5849

    Article  PubMed  CAS  Google Scholar 

  11. Kawano K, Gomi S, Tanaka K, Tsuda N, Kamura T, Itoh K, Yamada A (2000) Identification of a new endoplasmic reticulum-resident protein recognized by HLA-A24-restricted tumor-infiltrating lymphocytes of lung cancer. Cancer Res 60:3550–3558

    PubMed  CAS  Google Scholar 

  12. Kikuchi M, Nakao M, Inoue Y, Matsunaga K, Shichijo S, Yamana H, Itoh K (1999) Identification of a SART-1-derived peptide capable of inducing HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes. Int J Cancer 81:459–466

    Article  PubMed  CAS  Google Scholar 

  13. Nakao M, Shichijo S, Imaizumi T, Inoue Y, Matsunaga K, Yamada A, Kikuchi M, Tsuda N, Ohta K, Takamori S, Yamana H, Fujita H, Itoh K (2000) Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. J Immunol 164:2565–2574

    Article  PubMed  CAS  Google Scholar 

  14. Nishizaka S, Gomi S, Harada K, Oizumi K, Itoh K, Shichijo S (2000) A new tumor-rejection antigen recognized by cytotoxic T lymphocytes infiltrating into a lung adenocarcinoma. Cancer Res 60:4830–4837

    PubMed  CAS  Google Scholar 

  15. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293

    PubMed  CAS  Google Scholar 

  16. Tanaka F, Fujie T, Tahara K, Mori M, Takesako K, Sette A, Celis E, Akiyoshi T (1997) Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 57:4465–4468

    PubMed  CAS  Google Scholar 

  17. Tanaka H, Tsunoda T, Nukaya I, Sette A, Matsuda K, Umano Y, Yamaue H, Takesako K, Tanimura H (2001) Mapping the HLA-A24-restricted T-cell epitope peptide from a tumour-associated antigen HER2/neu: possible immunotherapy for colorectal carcinomas. Br J Cancer 84:94–99

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Umano Y, Tsunoda T, Tanaka H, Matsuda K, Yamaue H, Tanimura H (2001) Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53. Br J Cancer 84:1052–1057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, Tahara H (2005) Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res 65:4939–4946

    Article  PubMed  CAS  Google Scholar 

  20. Yamada A, Kawano K, Koga M, Matsumoto T, Itoh K (2001) Multidrug resistance-associated protein 3 is a tumor rejection antigen recognized by HLA-A2402-restricted cytotoxic T lymphocytes. Cancer Res 61:6459–6466

    PubMed  CAS  Google Scholar 

  21. Yang D, Nakao M, Shichijo S, Sasatomi T, Takasu H, Matsumoto H, Mori K, Hayashi A, Yamana H, Shirouzu K, Itoh K (1999) Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restricted cytotoxic T lymphocytes in cancer patients. Cancer Res 59:4056–4063

    PubMed  CAS  Google Scholar 

  22. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Article  PubMed  CAS  Google Scholar 

  23. Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y, Ueno H, Kondo S, Morizane C, Ikeda M, Okusaka T, Takaue Y, Heike Y (2011) Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother 34:92–99

    Article  PubMed  CAS  Google Scholar 

  24. Miyazawa M, Ohsawa R, Tsunoda T, Hirono S, Kawai M, Tani M, Nakamura Y, Yamaue H (2010) Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci 101:433–439

    Article  PubMed  CAS  Google Scholar 

  25. Ikeda-Moore Y, Tomiyama H, Miwa K, Oka S, Iwamoto A, Kaneko Y, Takiguchi M (1997) Identification and characterization of multiple HLA-A24-restricted HIV-1 CTL epitopes: strong epitopes are derived from V regions of HIV-1. J Immunol 159:6242–6252

    PubMed  CAS  Google Scholar 

  26. Kuzushima K, Hayashi N, Kimura H, Tsurumi T (2001) Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 98:1872–1881

    Article  PubMed  CAS  Google Scholar 

  27. Oiso M, Eura M, Katsura F, Takiguchi M, Sobao Y, Masuyama K, Nakashima M, Itoh K, Ishikawa T (1999) A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer 81:387–394

    Article  PubMed  CAS  Google Scholar 

  28. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  29. Dodson LF, Hawkins WG, Goedegebuure P (2011) Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 3:517–537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  31. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  32. Schmitz-Winnenthal FH, Galindo-Escobedo LV, Rimoldi D, Geng W, Romero P, Koch M, Weitz J, Krempien R, Niethammer AG, Beckhove P, Buchler MW, Z’Graggen K (2007) Potential target antigens for immunotherapy in human pancreatic cancer. Cancer Lett 252:290–298

    Article  PubMed  CAS  Google Scholar 

  33. Singh P, Srinivasan R, Wig JD (2011) Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment. Pancreas 40:644–652

    Article  PubMed  Google Scholar 

  34. Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:978312

    PubMed Central  PubMed  Google Scholar 

  35. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Honda M, Kaneko S (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53:1206–1216

    Article  PubMed  CAS  Google Scholar 

  36. Sakakura K, Chikamatsu K, Furuya N, Appella E, Whiteside TL, Deleo AB (2007) Toward the development of multi-epitope p53 cancer vaccines: an in vitro assessment of CD8(+) T cell responses to HLA class I-restricted wild-type sequence p53 peptides. Clin Immunol 125:43–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Suehara N, Mizumoto K, Tanaka M, Niiyama H, Yokohata K, Tominaga Y, Shimura H, Muta T, Hamasaki N (1997) Telomerase activity in pancreatic juice differentiates ductal carcinoma from adenoma and pancreatitis. Clin Cancer Res 3:2479–2483

    PubMed  CAS  Google Scholar 

  38. Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M, Buanes T, Gaudernack G (2006) Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer 95:1474–1482

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Mizukoshi E, Nakamoto Y, Marukawa Y, Arai K, Yamashita T, Tsuji H, Kuzushima K, Takiguchi M, Kaneko S (2006) Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology 43:1284–1294

    Article  PubMed  CAS  Google Scholar 

  40. Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF (2004) The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 10:6946–6955

    Article  PubMed  CAS  Google Scholar 

  41. van den Ancker W, Ruben JM, Westers TM, Wulandari D, Bontkes HJ, Hooijberg E, Stam AG, Santegoets SJ, Ossenkoppele GJ, de Gruijl T, van de Loosdrecht A (2013) Priming of PRAME- and WT1-specific CD8+ T cells in healthy donors but not in AML patients in complete remission: implications for immunotherapy. Oncoimmunology 2(4):e23971

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naïve repertoire. J Immunol Methods 310:40–52

    Article  PubMed  CAS  Google Scholar 

  43. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Bellone G, Smirne C, Mauri FA, Tonel E, Carbone A, Buffolino A, Dughera L, Robecchi A, Pirisi M, Emanuelli G (2006) Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 55:684–698

    Article  PubMed  CAS  Google Scholar 

  45. Noguchi M, Mine T, Komatsu N, Suekane S, Moriya F, Matsuoka K, Yutani S, Shichijo S, Yamada A, Toh U, Kawano K, Azuma K, Uemura H, Okuno K, Matsumoto K, Yanagimoto H, Yamanaka R, Oka M, Todo S, Sasada T, Itoh K (2010) Assessment of immunological biomarkers in patients with advanced cancer treated by personalized peptide vaccination. Cancer Biol Ther 10:1266–1279

    Article  PubMed  CAS  Google Scholar 

  46. Laheru D, Lutz E, Burke J, Biedrzycki B, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E, Hege K, Jaffee E (2008) Allogenic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Cin Cancer Res 14:1455–1463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kazumi Fushimi, Maki Kawamura, Nami Nishiyama, and Mikiko Nakamura for their technical assistance.

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Terashima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terashima, T., Mizukoshi, E., Arai, K. et al. P53, hTERT, WT-1, and VEGFR2 are the most suitable targets for cancer vaccine therapy in HLA-A24 positive pancreatic adenocarcinoma. Cancer Immunol Immunother 63, 479–489 (2014). https://doi.org/10.1007/s00262-014-1529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1529-8

Keywords

Navigation