Skip to main content

Advertisement

Log in

CD137 stimulation and p38 MAPK inhibition improve reactivity in an in vitro model of glioblastoma immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cell vaccination has become an interesting option for cancer immunotherapy. Tumor-lysate-pulsed dendritic cells (DC) can prime naïve T cells and induce the regression of established tumors including gliomas as shown in various animal models. Despite hopeful results even in clinical studies, the outcome for many patients is still unsatisfying. In the present study, we tested the combination of tumor-lysate-pulsed dendritic cells (TPDC) with a monoclonal antibody against CD137, a monoclonal antibody against CD25 (daclizumab) and a specific p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580) for improving immunostimulation in an in vitro model of immunotherapy for human gliomas. We observed a higher secretion of interferon gamma by TPDC-primed peripheral blood mononuclear cells (PBMC) that were incubated with an antibody against CD137 or the p38 MAPK inhibitor. In addition, we observed higher specific lysis of tumor cells after incubation of PBMC with the p38 MAPK inhibitor or the anti-CD137 antibody. In contrast, incubation of TPDC-primed PBMC with the anti-CD25 antibody did enhance neither interferon gamma secretion nor cellular cytotoxicity. Cell depletion experiments demonstrated that the immune reaction induced by TPDC is strongly dependent on CD4-positive and CD8-positive cells. Incubation of DC during maturation and antigen loading with the anti-CD137 antibody did not enhance cytotoxicity and interferon gamma secretion in comparison with application of the anti-CD137 antibody during priming. In conclusion, our data suggest that p38 MAPK inhibition and anti-CD137 antibodies can enhance the immune response against glioblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Vleeschouwer S, Rapp M, Sorg RV, Steiger HJ, Stummer W, van Gool S et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59:988–1000

    PubMed  Google Scholar 

  2. De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104

    Article  PubMed  Google Scholar 

  3. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  4. Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 86:1963–1967

    Article  PubMed  CAS  Google Scholar 

  5. Vinay DS, Kwon BS (1999) Relative abilities of 4-1BB (CD137) and CD28 to co-stimulate the response of cytokine deflected Th1 and Th2 cells. Immunobiology 200:246–263

    Article  PubMed  CAS  Google Scholar 

  6. Wilcox RA, Chapoval AI, Gorski KS, Otsuji M, Shin T, Flies DB et al (2002) Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 168:4262–4267

    PubMed  CAS  Google Scholar 

  7. Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagita H et al (2002) Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol 14:275–286

    Article  PubMed  CAS  Google Scholar 

  8. Nishimoto H, Lee SW, Hong H, Potter KG, Maeda-Yamamoto M, Kinoshita T et al (2005) Costimulation of mast cells by 4-1BB, a member of the tumour necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood 106:4241–4248

    Article  PubMed  CAS  Google Scholar 

  9. Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B et al (1994) Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol 24:2219–2227

    Article  PubMed  CAS  Google Scholar 

  10. Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA et al (1993) Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumour necrosis factor. Eur J Immunol 10:2631–2641

    Article  Google Scholar 

  11. DeBenedette MA, Shahinian A, Mak TW, Watts TH (1997) Costimulation of CD28- T lymphocytes by 4-1BB ligand. J Immunol 158:551–559

    PubMed  CAS  Google Scholar 

  12. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS (1994) 4-1BB T cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol 24:367–374

    Article  PubMed  CAS  Google Scholar 

  13. Cannons JL, Choi Y, Watts TH (2000) Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J Immunol 165:6193–6204

    PubMed  CAS  Google Scholar 

  14. Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD et al (1998) CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med 187:1849–1862

    Article  PubMed  CAS  Google Scholar 

  15. Cannons JL, Hoeflich KP, Woodgett JR, Watts TH (1999) Role of the stress kinase pathway in signaling via the T cell costimulatory receptor 4-1BB. J Immunol 163:2990–2998

    PubMed  CAS  Google Scholar 

  16. Cannons JL, Lau P, Ghumman B, DeBenedette MA, Yagita H, Okumura K et al (2001) 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 167:1313–1324

    PubMed  CAS  Google Scholar 

  17. Cooper D, Bansal-Pakala P, Croft M (2002) 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol 32:521–529

    Article  PubMed  CAS  Google Scholar 

  18. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW et al (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55

    Article  PubMed  CAS  Google Scholar 

  19. Hurtado JC, Kim YJ, Kwon BS (1997) Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol 158:2600–2609

    PubMed  CAS  Google Scholar 

  20. Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin in mammalian cells. Science 265:808–811

    Article  PubMed  CAS  Google Scholar 

  21. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    Article  PubMed  CAS  Google Scholar 

  22. Nebreda AR, Porras A (2000) p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25:257–260

    Article  PubMed  CAS  Google Scholar 

  23. Dodeller F, Schulze-Koops H (2006) The p38 mitogen-activated protein kinase signalling cascade in CD4 T cells. Arthritis Res Ther 8:205

    Article  PubMed  Google Scholar 

  24. Rincón M, Enslen H, Raingeaud J, Recht M, Zapton T, Su MS et al (1998) Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J 17:2817–2829

    Article  PubMed  Google Scholar 

  25. Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, Rincón M (2000) Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol Cell Biol 20:936–946

    Article  PubMed  CAS  Google Scholar 

  26. Nakagawa S, Ohtani T, Mizuashi M, Mollah ZU, Ito Y, Tagami H et al (2004) p38 mitogen-activated protein kinase mediates dual role of ultraviolet B radiation in induction of maturation and apoptosis of monocyte-derived dendritic cells. J Invest Dermatol 123:361–370

    Article  PubMed  CAS  Google Scholar 

  27. Puig-Kröger A, Relloso M, Fernández-Capetillo O, Zubiaga A, Silva A, Bernabéu C et al (2001) Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood 98:2175–2182

    Article  PubMed  Google Scholar 

  28. Arrighi JF, Rebsamen M, Rousset F, Kindler B, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 166:3837–3845

    PubMed  CAS  Google Scholar 

  29. Xie J, Qian J, Wang S, Freeman ME III, Epstein J, Yi Q (2003) Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol 171:4792–4800

    PubMed  CAS  Google Scholar 

  30. Yao Y, Xu Q, Kwon MJ, Matta R, Liu Y, Hong SC et al (2006) ERK and p38 MAPK signalling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages. J Immunol 177:70–76

    PubMed  CAS  Google Scholar 

  31. Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K et al (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 180:3797–3806

    PubMed  CAS  Google Scholar 

  32. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107:2432–2439

    Article  PubMed  CAS  Google Scholar 

  33. Franks HA, Wang Q, Lax SJ, Collins MK, Escors D, Patel PM et al (2013) Novel function for the p38-MK2 signalling pathway in circulating CD1c+ (BDCA-1+) myeloid dendritic cells from healthy donors and advanced cancer patients; inhibition of p38 enhances IL-12 whilst suppressing IL-10. Int J Cancer. doi:10.1002/ijc.28398

  34. Boyman O, Surh CD, Sprent J (2006) Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opin Biol Ther 6:1323–1331

    Article  PubMed  CAS  Google Scholar 

  35. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    Article  PubMed  CAS  Google Scholar 

  36. Létourneau S, Krieg C, Pantaleo G, Boyman O (2009) IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol 123:758–762

    Article  PubMed  Google Scholar 

  37. Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337

    Article  PubMed  CAS  Google Scholar 

  38. Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro-oncology 11:529–542

    Article  PubMed  CAS  Google Scholar 

  39. Beckman G, Beckman L, Pontén J, Westermark B (1971) G-6-PD and PGM phenotypes of 16 continuous human tumor cell lines. Evidence against cross-contamination and contamination by HeLa cells. Hum Hered 21:238–241

    Article  PubMed  CAS  Google Scholar 

  40. Stein GH (1979) T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 99:43–54

    Article  PubMed  CAS  Google Scholar 

  41. Chen TR, Hay RJ, Macy ML (1983) Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins. Cancer Genet Cytogenet 10:351–362

    Article  PubMed  CAS  Google Scholar 

  42. Foell JL, Volkmer I, Giersberg C, Kornhuber M, Horneff G, Staege MS (2008) Loss of detectability of Charcot–Leyden crystal protein transcripts in blood cells after treatment with dimethyl sulfoxide. J Immunol Methods 339:99–103

    Article  PubMed  CAS  Google Scholar 

  43. Hoennscheidt C, Max D, Richter N, Staege MS (2009) Expression of CD4 on Epstein–Barr virus-immortalized B cells. Scand J Immunol 70:216–225

    Article  PubMed  CAS  Google Scholar 

  44. Staege MS, Schneider J, Eulitz M, Scholz S, Bornkamm GW, Wölfel T et al (2000) Consequences of antigen self-presentation by tumor-specific cytotoxic T cells. Immunobiology 201:332–346

    Article  PubMed  CAS  Google Scholar 

  45. De Vleeschouwer S, Arredouani M, Adé M, Cadot P, Vermassen E, Ceuppens JL et al (2005) Uptake and presentation of malignant glioma tumour cell lysates by monocyte derived dendritic cells. Cancer Immunol Immunother 54:372–382

    Article  PubMed  Google Scholar 

  46. Yoshida S, Morii K, Watanabe M, Saito T, Yamamoto K, Tanaka R (2001) The generation of anti-tumoral cells using dendritic cells from the peripheral blood of patients with malignant brain tumors. Cancer Immunol Immunother 50:321–327

    Article  PubMed  CAS  Google Scholar 

  47. Okada H, Tahara H, Shurin MR, Attanucci J, Giezeman-Smits KM, Fellows WK et al (1998) Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer 78:196–201

    Article  PubMed  CAS  Google Scholar 

  48. Siesjo P, Visse E, Sjogren HO (1996) Cure of established, intracerebral rat gliomas induced by therapeutic immunizations with tumor cells and purified APC or adjuvant IFN-gamma treatment. J Immunother Emphas Tumor Immunol 19:334–345

    Article  CAS  Google Scholar 

  49. De Vleeschouwer S, Van Calenbergh F, Demaerel P, Flamen P, Rutkowski S, Kaempgen E et al (2004) Transient local response and persistent tumor control of recurrent malignant glioma treated with combination therapy including dendritic cell therapy. J Neurosurg 100:492–497

    PubMed  Google Scholar 

  50. Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JE, Kühl J, Demaerel P et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662

    PubMed  CAS  Google Scholar 

  51. Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344

    Article  PubMed  CAS  Google Scholar 

  52. Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL et al (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459

    Article  PubMed  CAS  Google Scholar 

  53. Liau LM, Black KL, Martin NA, Sykes SN, Bronstein JM, Jouben-Steele L et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9:e8

    Article  PubMed  CAS  Google Scholar 

  54. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  55. Wheeler CJ, Black KL, Liu G, Ying H, Yu JS, Zhang W et al (2003) Thymic CD8+ T cell production strongly influences tumor antigen recognition and age dependent glioma mortality. J Immunol 171:4927–4933

    PubMed  CAS  Google Scholar 

  56. Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  PubMed  CAS  Google Scholar 

  57. Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  PubMed  CAS  Google Scholar 

  58. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    PubMed  CAS  Google Scholar 

  59. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  60. Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S et al (2010) Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 54:519–525

    PubMed  Google Scholar 

  61. Mellman I, Steinman R (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  PubMed  CAS  Google Scholar 

  62. Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    Article  PubMed  CAS  Google Scholar 

  63. Natsume A, Wakabayashi T, Tsujimura K, Shimato S, Ito M, Kuzushima K et al (2008) The DNA demethylating agent 5-aza-2′-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma. Int J Cancer 122:2542–2553

    Article  PubMed  CAS  Google Scholar 

  64. Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT et al (1993) Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 150:771–781

    PubMed  CAS  Google Scholar 

  65. Hurtado JC, Kim SH, Pollok KE, Lee ZH, Kwon BS (1995) Potential role of 4-1BB in T cell activation. Comparison with the costimulatory molecule CD28. J Immunol 155:3360–3367

    PubMed  CAS  Google Scholar 

  66. Melero I, Johnston JV, Shufford WW, Mittler RS, Chen L (1998) NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumour immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol 190:167–172

    Article  PubMed  CAS  Google Scholar 

  67. Gramaglia I, Cooper D, Miner KT, Kwon BS, Croft M (2000) Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol 30:392–402

    Article  PubMed  CAS  Google Scholar 

  68. Schwarz H, Blanco FJ, von Kempis J, Valbracht J, Lotz M (1996) ILA, a member of the human nerve growth factor/tumour necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 87:2839–2845

    PubMed  CAS  Google Scholar 

  69. Takahashi C, Mittler RS, Vella AT (1999) Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J Immunol 162:5037–5040

    PubMed  CAS  Google Scholar 

  70. Laderach D, Movassagh M, Johnson A, Mittler RS, Galy A (2002) 4-1BB co-stimulation enhances human CD8(1) T cell priming by augmenting the proliferation and survival of effector CD8(1) T cells. Int Immunol 14:1155–1167

    Article  PubMed  CAS  Google Scholar 

  71. Chen L, McGowan P, Ashe S, Johnston J, Li Y, Hellström I et al (1994) Tumour immunogenicity determines the effect of B7 costimulation on T cell-mediated tumour immunity. J Exp Med 179:523–532

    Article  PubMed  CAS  Google Scholar 

  72. Strome SE, Martin B, Flies D, Tamada K, Chapoval AI, Sargent DJ et al (2000) Enhanced therapeutic potential of adoptive immunotherapy by in vitro CD28/4-1BB costimulation of tumour-reactive T cells against a poorly immunogenic, major histocompatibility complex class I-negative A9P melanoma. J Immunother 23:430–437

    Article  PubMed  CAS  Google Scholar 

  73. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  74. Ito F, Li Q, Shreiner AB, Okuyama R, Jure-Kunkel MN, Teitz-Tennenbaum S et al (2004) Anti-CD137 monoclonal antibody administration augments the antitumour efficacy of dendritic cell-based vaccines. Cancer Res 64:8411–8419

    Article  PubMed  CAS  Google Scholar 

  75. Xu DP, Sauter BV, Huang TG, Meseck M, Woo SL, Chen SH (2005) The systemic administration of Ig-4-1BB ligand in combination with IL-12 gene transfer eradicates hepatic colon carcinoma. Gene Ther 12:1526–1533

    Article  PubMed  CAS  Google Scholar 

  76. Zhang L, Wang Q, Wang X, Ding P, Song J, Ma C et al (2004) Anti-CD137 monoclonal antibody promotes the direct anti-tumour effect mediated by peripheral blood-derived human dendritic cells in vitro. Cell Mol Immunol 1:71–76

    PubMed  CAS  Google Scholar 

  77. Adler HS, Kubsch S, Graulich E, Ludwig S, Knop J, Steinbrink K (2007) Activation of MAP kinase p38 is critical for the cell-cycle-controlled suppressor function of regulatory T cells. Blood 109:4351–4359

    Article  PubMed  CAS  Google Scholar 

  78. Dodeller F, Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H (2005) The p38 mitogen-activated protein kinase regulates effector functions of primary human CD4 T cells. Eur J Immunol 35:3631–3642

    Article  PubMed  CAS  Google Scholar 

  79. Lu HT, Yang DD, Wysk M, Gatti E, Mellman I, Davis RJ et al (1999) Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J 18:1845–1857

    Article  PubMed  CAS  Google Scholar 

  80. Yong HY, Koh MS, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18:1893–1905

    Article  PubMed  CAS  Google Scholar 

  81. Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I (2010) Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 37:508–516

    Article  PubMed  CAS  Google Scholar 

  82. Vinay DS, Kwon BS (2012) Immunotherapy of cancer with 4-1BB. Mol Cancer Ther 11:1062–1070

    Article  PubMed  CAS  Google Scholar 

  83. Moore AC, Gallimore A, Draper SJ, Watkins KR, Gilbert SC, Hill AV (2005) Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. J Immunol 175:7264–7273

    PubMed  CAS  Google Scholar 

  84. Shah AH, Bregy A, Heros DO, Komotar RJ, Goldberg J (2013) Dendritic cell vaccine for recurrent high grade gliomas in pediatric and adult subjects: clinical trial protocol. Neurosurgery. doi:10.1227/NEU.0000000000000107

  85. Krause P, Singer E, Darley PI, Klebensberger J, Groettrup M, Legler DF (2007) Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: enhanced T cell stimulatory capacity despite IDO. J Leukoc Biol 82:1106–1114

    Article  PubMed  CAS  Google Scholar 

  86. Nava S, Dossena M, Pogliani S, Pellegatta S, Antozzi C, Baggi F et al (2012) An optimized method for manufacturing a clinical scale dendritic cell-based vaccine for the treatment of glioblastoma. PLoS One 7:e52301

    Article  PubMed  CAS  Google Scholar 

  87. Shimabukuro-Vornhagen A, Liebig TM, Koslowsky T, Theurich S, von Bergwelt-Baildon MS (2013) The ratio between dendritic cells and T cells determines whether prostaglandin E2 has a stimulatory or inhibitory effect. Cell Immunol 281:62–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Mittler for kind support with anti-CD137 antibodies.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin S. Staege.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnöl, C., Herbarth, M., Föll, J. et al. CD137 stimulation and p38 MAPK inhibition improve reactivity in an in vitro model of glioblastoma immunotherapy. Cancer Immunol Immunother 62, 1797–1809 (2013). https://doi.org/10.1007/s00262-013-1484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1484-9

Keywords

Navigation