Skip to main content

Advertisement

Log in

Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

New gene expressed in prostate (NGEP) is a newly diagnosed prostate-specific gene that is expressed only in normal prostate and prostate cancer cells. Discovery of tissue-specific markers may promote the development of novel targets for immunotherapy of prostate cancer. In the present study, the staining pattern and clinical significance of NGEP were evaluated in a series of prostate tissues composed of 123 prostate cancer, 19 high-grade prostatic intraepithelial neoplasia and 44 samples of benign prostate tissue included in tissue microarrays using immunohistochemistry. Our study demonstrated that NGEP localized mainly in the apical and lateral membranes and was also partially distributed in the cytoplasm of epithelial cells of normal prostate tissue. All of the examined prostate tissues expressed NGEP with a variety of intensities; the level of expression was significantly more in the benign prostate tissues compared to malignant prostate samples (P value <0.001). Among prostate adenocarcinoma samples, a significant and inverse correlation was observed between the intensity of NGEP expression and increased Gleason score (P = 0.007). Taken together, we found that NGEP protein is widely expressed in low-grade to high-grade prostate adenocarcinomas as well as benign prostate tissues, and the intensity of expression is inversely proportional to the level of malignancy. NGEP could be an attractive target for immune-based therapy of prostate cancer patients as an alternative to the conventional therapies particularly in indolent patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ano 7:

Anoctamin 7

BPH:

Benign prostatic hyperplasia

Epe:

Extraprostatic extension

ESTs:

Expressed sequence tags

FDA:

Food and drug administration

HPIN:

High-grade prostatic intraepithelial neoplasia

IHC:

Immunohistochemistry

ISH:

In situ hybridization

MAb:

Monoclonal antibody

NGEP:

New gene expressed in prostate

PBMC:

Peripheral blood mononuclear cell

PCa:

Prostate cancer

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

PSCA:

Prostate stem cell antigen

TMA:

Tissue macroarray

TRICOM:

Triad of costimulatory molecules (B7.1, ICAM-1, LFA-3)

References

  1. Vainio P, Lehtinen L, Mirtti T, Hilvo M, Seppanen-Laakso T, Virtanen J, Sankila A, Nordling S, Lundin J, Rannikko A, Oresic M, Kallioniemi O, Iljin K (2011) Phospholipase PLA2G7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins. Oncotarget 2:1176–1190

    PubMed  Google Scholar 

  2. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592

    Article  PubMed  CAS  Google Scholar 

  3. Shanmugam A, Suriano R, Chaudhuri D, Rajoria S, George A, Mittelman A, Tiwari RK (2011) Identification of PSA peptide mimotopes using phage display peptide library. Peptides 32:1097–1102

    Article  PubMed  CAS  Google Scholar 

  4. Crawford ED, Rosenblum M, Ziada AM, Lange PH (1999) Hormone refractory prostate cancer. Urology 54:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, Tsang KY, Yokokawa J, Hodge JW, Menard C, Camphausen K, Coleman CN, Sullivan F, Steinberg SM, Schlom J, Dahut W (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11:3353–3362

    Article  PubMed  CAS  Google Scholar 

  6. Karnes RJ, Whelan CM, Kwon ED (2006) Immunotherapy for prostate cancer. Curr Pharm Des 12:807–817

    Article  PubMed  CAS  Google Scholar 

  7. Lechleider RJ, Arlen PM, Tsang KY, Steinberg SM, Yokokawa J, Cereda V, Camphausen K, Schlom J, Dahut WL, Gulley JL (2008) Safety and immunologic response of a viral vaccine to prostate-specific antigen in combination with radiation therapy when metronomic-dose interleukin 2 is used as an adjuvant. Clin Cancer Res 14:5284–5291

    Article  PubMed  CAS  Google Scholar 

  8. Nesslinger NJ, Ng A, Tsang KY, Ferrara T, Schlom J, Gulley JL, Nelson BH (2010) A viral vaccine encoding prostate-specific antigen induces antigen spreading to a common set of self-proteins in prostate cancer patients. Clin Cancer Res 16:4046–4056

    Article  PubMed  CAS  Google Scholar 

  9. Harada M, Noguchi M, Itoh K (2003) Target molecules in specific immunotherapy against prostate cancer. Int J Clin Oncol 8:193–199

    Article  PubMed  CAS  Google Scholar 

  10. Slovin SF (2005) Targeting novel antigens for prostate cancer treatment: focus on prostate-specific membrane antigen. Expert Opin Ther Targets 9:561–570

    Article  PubMed  CAS  Google Scholar 

  11. Arlen PM, Gulley JL, Tsang KY, Schlom J (2003) Strategies for the development of PSA-based vaccines for the treatment of advanced prostate cancer. Expert Rev Vaccines 2:483–493

    Article  PubMed  CAS  Google Scholar 

  12. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD (1994) Expression of the prostate-specific membrane antigen. Cancer Res 54:1807–1811

    PubMed  CAS  Google Scholar 

  13. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A 95:1735–1740

    Article  PubMed  CAS  Google Scholar 

  14. Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93:749–753

    Article  PubMed  CAS  Google Scholar 

  15. Yang WB, Cai F, Cheng CT, Cao G, Qing ZY (2009) Role of prostate stem cell antigen in human pancreatic carcinoma: a tissue microarray-based study. Nan Fang Yi Ke Da Xue Xue Bao 29:2135–2137

    PubMed  Google Scholar 

  16. Bera TK, Das S, Maeda H, Beers R, Wolfgang CD, Kumar V, Hahn Y, Lee B, Pastan I (2004) NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate. Proc Natl Acad Sci U S A 101:3059–3064

    Article  PubMed  CAS  Google Scholar 

  17. Duran C, Qu Z, Osunkoya AO, Cui Y, Hartzell HC (2012) ANOs 3–7 in the anoctamin/Tmem16 Cl channel family are intracellular proteins. Am J Physiol Cell Physiol 302:C482–C493

    Article  PubMed  CAS  Google Scholar 

  18. Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z (2009) Anoctamin/TMEM16 family members are Ca2+-activated Cl channels. J Physiol 587:2127–2139

    Article  PubMed  CAS  Google Scholar 

  19. Galindo BE, Vacquier VD (2005) Phylogeny of the TMEM16 protein family: some members are overexpressed in cancer. Int J Mol Med 16:919–924

    PubMed  CAS  Google Scholar 

  20. Moyer BD, Hevezi P, Gao N, Lu M, Kalabat D, Soto H, Echeverri F, Laita B, Yeh SA, Zoller M, Zlotnik A (2009) Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS ONE 4:e7682

    Article  PubMed  Google Scholar 

  21. Das S, Hahn Y, Nagata S, Willingham MC, Bera TK, Lee B, Pastan I (2007) NGEP, a prostate-specific plasma membrane protein that promotes the association of LNCaP cells. Cancer Res 67:1594–1601

    Article  PubMed  CAS  Google Scholar 

  22. Das S, Hahn Y, Walker DA, Nagata S, Willingham MC, Peehl DM, Bera TK, Lee B, Pastan I (2008) Topology of NGEP, a prostate-specific cell:cell junction protein widely expressed in many cancers of different grade level. Cancer Res 68:6306–6312

    Article  PubMed  CAS  Google Scholar 

  23. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  24. Zhou G, Levitsky H (2012) Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012:124187

    Article  PubMed  Google Scholar 

  25. Drake CG (2010) Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 10:580–593

    Article  PubMed  CAS  Google Scholar 

  26. Arlen PM, Kaufman HL, DiPaola RS (2005) Pox viral vaccine approaches. Semin Oncol 32:549–555

    Article  CAS  Google Scholar 

  27. Gerritsen WR (2012) The evolving role of immunotherapy in prostate cancer. Ann Oncol 23(Suppl 8):viii22–viii27

    Article  PubMed  Google Scholar 

  28. Cereda V, Poole DJ, Palena C, Das S, Bera TK, Remondo C, Gulley JL, Arlen PM, Yokokawa J, Pastan I, Schlom J, Tsang KY (2010) New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy. Cancer Immunol Immunother 59:63–71

    Article  PubMed  CAS  Google Scholar 

  29. Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL (2005) The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 29:1228–1242

    Article  PubMed  Google Scholar 

  30. Pierorazio PM, Walsh PC, Partin AW, Epstein JI (2013) Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int 111:753–760

    Article  PubMed  Google Scholar 

  31. Ro YK, Lee S, Jeong CW, Hong SK, Byun SS, Lee SE (2012) Biochemical recurrence in Gleason score 7 prostate cancer in Korean men: significance of the primary Gleason grade. Korean J Urol 53:826–829

    Article  PubMed  Google Scholar 

  32. Cheng L, Montironi R, Bostwick DG, Lopez-Beltran A, Berney DM (2012) Staging of prostate cancer. Histopathology 60:87–117

    Article  PubMed  Google Scholar 

  33. Madjd Z, Karimi A, Molanae S, Asadi-Lari M (2011) BRCA1 protein expression level and CD44(+) phenotype in breast cancer patients. Cell J 13:155–162

    PubMed  Google Scholar 

  34. Mehrazma M, Madjd Z, Kalantari E, Panahi M, Hendi A, Shariftabrizi A (2012) Expression of stem cell markers, CD133 and CD44, in pediatric solid tumors: a study using tissue microarray. Fetal Pediatr Pathol 32:192–204

    Article  PubMed  Google Scholar 

  35. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  36. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  37. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078

    Article  PubMed  CAS  Google Scholar 

  38. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237

    Article  PubMed  CAS  Google Scholar 

  39. Mhawech-Fauceglia P, Zhang S, Terracciano L, Sauter G, Chadhuri A, Herrmann FR, Penetrante R (2007) Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using multiple tumour tissue microarray technique. Histopathology 50:472–483

    Article  PubMed  CAS  Google Scholar 

  40. Bahrenberg G, Brauers A, Joost HG, Jakse G (2000) Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors. Biochem Biophys Res Commun 275:783–788

    Article  PubMed  CAS  Google Scholar 

  41. Koh YT, Gray A, Higgins SA, Hubby B, Kast WM (2009) Androgen ablation augments prostate cancer vaccine immunogenicity only when applied after immunization. Prostate 69:571–584

    Article  PubMed  CAS  Google Scholar 

  42. Ragde H, Cavanagh WA, Tjoa BA (2004) Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer. J Urol 172:2532–2538

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted as a research project and supported by a grant from Tehran University of Medical Sciences (Grant #13330).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Madjd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohsenzadegan, M., Madjd, Z., Asgari, M. et al. Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis. Cancer Immunol Immunother 62, 1609–1618 (2013). https://doi.org/10.1007/s00262-013-1463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1463-1

Keywords

Navigation