Cancer Immunology, Immunotherapy

, Volume 62, Issue 8, pp 1283–1292 | Cite as

Mistletoe lectin has a shiga toxin-like structure and should be combined with other Toll-like receptor ligands in cancer therapy

  • Claudia Maletzki
  • Michael Linnebacher
  • Rajkumar Savai
  • Uwe Hobohm
Opinion Paper

Abstract

Mistletoe extract (ME) is applied as an adjuvant treatment in cancer therapy in thousands of patients each year in Europe. The main immunostimulating component of mistletoe extract, mistletoe lectin, recently has been shown to be a pattern recognition receptor ligand and hence is binding to an important class of pathogen-sensing receptors. Pattern recognition receptor ligands are potent activators of dendritic cells. This activation is a prerequisite for a full-blown T-cell response against cancer cells. Pattern recognition receptor ligands are increasingly recognized as important players in cancer immunotherapy. We collect evidence from case studies on spontaneous regression, from epidemiology, from experiments in a mouse cancer model, and from protein structure comparisons to argue that a combination of mistletoe therapy with other pattern recognition receptor ligand substances leads to an increased immune stimulatory effect. We show that mistletoe lectin is a plant protein of bacterial origin with a 3D structure very similar to shiga toxin from Shigella dysenteriae, which explains the remarkable immunogenicity of mistletoe lectin. Secondly, we show that a combination of pattern recognition receptor ligands applied metronomically in a cancer mouse model leads to complete remission, while single pattern recognition receptor ligands slowed tumor growth. Taken together, we propose to combine mistletoe drugs with other pattern recognition receptor ligand drugs to increase its efficacy in adjuvant or even primary cancer therapy.

Keywords

Mistletoe extract Mistletoe lectin Pattern recognition receptor ligands Shiga toxin Cancer immunotherapy 

References

  1. 1.
    Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50:391–396PubMedGoogle Scholar
  2. 2.
    Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J (2008) Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut 57:483–491. doi:10.1136/gut.2007.125419 PubMedCrossRefGoogle Scholar
  3. 3.
    Zahl PH, Maehlen J, Welch HG (2008) The natural history of invasive breast cancers detected by screening mammography. Arch Intern Med 168:2311–2316. doi:10.1001/archinte.168.21.2311 PubMedCrossRefGoogle Scholar
  4. 4.
    Deidier A (1725) Dissertation Medecinal et Chirurgical sur les Tumeurs, ParisGoogle Scholar
  5. 5.
    Rohdenburg G (1918) Fluctuations in the growth energy of malignant tumors in man, with especial reference to spontaneous recession. J Cancer Res 3:193–225Google Scholar
  6. 6.
    Pearl R (1929) Cancer and tuberculosis. Am J Hyg 9:97–162Google Scholar
  7. 7.
    Braunstein A (1929) Krebs und malaria. Z Krebsforsch 29:330–333CrossRefGoogle Scholar
  8. 8.
    Braunstein A (1929) Experimentelle und klinische Grundlagen fuer Malariabehandlung des Krebses. Z Krebsforsch 29:468–490Google Scholar
  9. 9.
    Engel P (1934) Ueber den Infektionsindex der Krebskranken. Wien Klin Wochenschr 47:1118–1119Google Scholar
  10. 10.
    Sinek F (1936) Versuch einer statistischen Erfassung endogener Faktoren bei Carcinomerkrankungen. Z Krebsforsch 44:492–527CrossRefGoogle Scholar
  11. 11.
    Diamond LK, Luhby LA (1951) Pattern of ‘spontaneous’ remissions in leukemia of the childhood, observed in 26 of 300 cases. Am J Med 10:238ffCrossRefGoogle Scholar
  12. 12.
    West RO (1966) Epidemiologic study of malignancies of the ovaries. Cancer 19(7):1001–1007PubMedCrossRefGoogle Scholar
  13. 13.
    Klyuyeva NG, Roskin GI (1963) Biotherapy of malignant tumours. Pergamon Press, OxfordGoogle Scholar
  14. 14.
    Kienle GS (2012) Fever in cancer treatment: Coley’s therapy and epidemiological observations. Glob Adv Health Med 1(1):90–98CrossRefGoogle Scholar
  15. 15.
    Witzel L (1970) History and other diseases in patients with malignant neoplasms. Med Klin 65(18):876–879PubMedGoogle Scholar
  16. 16.
    Stephenson HE Jr et al (1971) Host immunity and spontaneous regression of cancer evaluated by computerized data reduction study. Surg Gynecol Obstet 133(4):649–655PubMedGoogle Scholar
  17. 17.
    Zygiert Z (1971) Hodgkin’s disease: remissions after measles. Lancet 1(7699):593PubMedCrossRefGoogle Scholar
  18. 18.
    Ruckdeschel JC et al (1972) Postoperative empyema improves survival in lung cancer. documentation and analysis of a natural experiment. N Engl J Med 287(20):1013–1017PubMedCrossRefGoogle Scholar
  19. 19.
    Newhouse ML et al (1977) A case control study of carcinoma of the ovary. Br J Prev Soc Med 31(3):148–153PubMedGoogle Scholar
  20. 20.
    Menczer J et al (1979) Possible role of mumps virus in the etiology of ovarian cancer. Cancer 43(4):1375–1379PubMedCrossRefGoogle Scholar
  21. 21.
    Cramer DW et al (1983) Mumps, menarche, menopause, and ovarian cancer. Am J Obstet Gynecol 147(1):1–6PubMedGoogle Scholar
  22. 22.
    Remy W et al (1983) Tumorträger haben selten Infekte in der Anamnese. Med Klin 78:95–98Google Scholar
  23. 23.
    Ronne T (1985) Measles virus infection without rash in childhood is related to disease in adult life. Lancet 1(8419):1–5PubMedCrossRefGoogle Scholar
  24. 24.
    Enterline PE et al (1985) Endotoxins, cotton dust, and cancer. Lancet 2(8461):934–935PubMedCrossRefGoogle Scholar
  25. 25.
    van Steensel-Moll HA, Valkenburg HA, van Zanen GE (1986) Childhood leukemia and infectious diseases in the first year of life: a register-based case–control study. Am J Epidemiol 124(4):590–594PubMedGoogle Scholar
  26. 26.
    Grossarth-Maticek R et al (1987) Reported herpes-virus-infection, fever and cancer incidence in a prospective study. J Chronic Dis 40(10):967–976PubMedCrossRefGoogle Scholar
  27. 27.
    Rotoli B et al (1982) Long-term survival in acute myelogenous leukemia complicated by chronic active hepatitis. N Engl J Med 307(27):1712–1713PubMedGoogle Scholar
  28. 28.
    Treon SP, Broitman SA (1992) Beneficial effects of post-transfusional hepatitis in acute myelogenous leukemia may be mediated by lipopolysaccharides, tumor necrosis factor alpha and interferon gamma. Leukemia 6(10):1036–1042PubMedGoogle Scholar
  29. 29.
    Abel U et al (1991) Common infections in the history of cancer patients and controls. J Cancer Res Clin Oncol 117(4):339–344PubMedCrossRefGoogle Scholar
  30. 30.
    Mastrangelo G, Fadda E, Milan G (1998) Cancer increased after a reduction of infections in the first half of this century in Italy: etiologic and preventive implications. Eur J Epidemiol 14(8):749–754PubMedCrossRefGoogle Scholar
  31. 31.
    Albonico HU, Braker HU, Husler J (1998) Febrile infectious childhood diseases in the history of cancer patients and matched controls. Med Hypotheses 51(4):315–320PubMedCrossRefGoogle Scholar
  32. 32.
    Maurer S, Koelmel KF (1998) Spontaneous regression of advanced malignant melanoma. Onkologie 21:14–18CrossRefGoogle Scholar
  33. 33.
    Schlehofer B et al (1999) Role of medical history in brain tumour development. Results from the international adult brain tumour study. Int J Cancer 82(2):155–160PubMedCrossRefGoogle Scholar
  34. 34.
    Koelmel KF et al (1999) Infections and melanoma risk: results of a multicenter EORTC case study. Melanoma Res 9:511–519CrossRefGoogle Scholar
  35. 35.
    Stewart BW, Kleihues P (2003) World Cancer report. World Health Organization, IARC Press, LyonGoogle Scholar
  36. 36.
    Koelmel KF et al (2005) Prior immunisation of patients with malignant melanoma with vaccinia or BCG is associated with better survival. An European Organization for Research and Treatment of Cancer cohort study on 542 patients. Eur J Cancer 41(1):118–125CrossRefGoogle Scholar
  37. 37.
    Mastrangelo G et al (2005) Lung cancer risk: effect of dairy farming and the consequence of removing that occupational exposure. Am J Epidemiol 161(11):1037–1046PubMedCrossRefGoogle Scholar
  38. 38.
    Jeys LM et al (2007) Post operative infection and increased survival in osteosarcoma patients: are they associated? Ann Surg Oncol 14(10):2887–2895PubMedCrossRefGoogle Scholar
  39. 39.
    Kim SY et al (2008) The influence of infection early after allogeneic stem cell transplantation on the risk of leukemic relapse and graft-versus-host disease. Am J Hematol 83(10):784–788PubMedCrossRefGoogle Scholar
  40. 40.
    Vestergaard H et al (2010) Tonsillitis, tonsillectomy and Hodgkin’s lymphoma. Int J Cancer 127(3):633–637PubMedCrossRefGoogle Scholar
  41. 41.
    Rudant J et al (2010) Childhood acute leukemia, early common infections, and allergy: the ESCALE Study. Am J Epidemiol 172(9):1015–1027PubMedCrossRefGoogle Scholar
  42. 42.
    Urayama KY et al (2010) A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol 39(3):718–732PubMedCrossRefGoogle Scholar
  43. 43.
    Urayama KY et al (2011) Early life exposure to infections and risk of childhood acute lymphoblastic leukemia. Int J Cancer 128(7):1632–1643PubMedCrossRefGoogle Scholar
  44. 44.
    Rudant J et al (2011) Childhood Hodgkin’s lymphoma, non-Hodgkin’s lymphoma and factors related to the immune system: the Escale Study (SFCE). Int J Cancer 129(9):2236–2247PubMedCrossRefGoogle Scholar
  45. 45.
    Chilvers C et al (1986) The common cold, allergy, and cancer. Br J Cancer 54(1):123–126PubMedCrossRefGoogle Scholar
  46. 46.
    Cardwell CR et al (2008) Infections in early life and childhood leukaemia risk: a UK case–control study of general practitioner records. Br J Cancer 99(9):1529–1533PubMedCrossRefGoogle Scholar
  47. 47.
    Hoffmann C et al (2002) Childhood diseases, infectious diseases, and fever as potential risk factors for cancer? Forsch Komplementarmed Klass Naturheilkd 9:324–330PubMedGoogle Scholar
  48. 48.
    Chen Y et al (1992) Risk factors for epithelial ovarian cancer in Beijing, China. Int J Epidemiol 21(1):23–29PubMedCrossRefGoogle Scholar
  49. 49.
    Mantovani A, Pierotti MA (2008) Cancer and inflammation: a complex relationship. Cancer Lett 267:180–181PubMedCrossRefGoogle Scholar
  50. 50.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. doi:10.1038/nature07205 PubMedCrossRefGoogle Scholar
  51. 51.
    Christian S, Palmer L (1928) An apparent recovery from multiple sarcoma with involvement of both bone and soft parts treated by toxin of erysipelas and bacillus prodigiosus. Am J Surg 43:188–197CrossRefGoogle Scholar
  52. 52.
    Coley-Nauts HC, Fowler GAA, Bogatko FH (1953) A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man. Acta Med Scand 145:5–102Google Scholar
  53. 53.
    Hobohm U, Stanford JL, Grange JM (2008) Pathogen-associated molecular pattern in cancer immunotherapy. Crit Rev Immunol 28:95–107PubMedCrossRefGoogle Scholar
  54. 54.
    Hobohm U (2009) Toward general prophylactic cancer vaccination. BioEssays 31:1071–1079. doi:10.1002/bies.200900025 PubMedCrossRefGoogle Scholar
  55. 55.
    Molassiotis A, Fernadez-Ortega P, Pud D et al (2005) Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol 16:655–663. doi:10.1093/annonc/mdi110 PubMedCrossRefGoogle Scholar
  56. 56.
    Kirsch A, Hajto T (2011) Case reports of sarcoma patients with optimized lectin-oriented mistletoe extract therapy. J Altern Complement Med 17:973–979. doi:10.1089/acm.2010.0596 PubMedCrossRefGoogle Scholar
  57. 57.
    Ostermann T, Bussing A (2012) Retrolective studies on the survival of cancer patients treated with mistletoe extracts: a meta-analysis. Explore (NY) 8:277–281. doi:10.1016/j.explore.2012.06.005 CrossRefGoogle Scholar
  58. 58.
    Bussing A, Raak C, Ostermann T (2012) Quality of life and related dimensions in cancer patients treated with mistletoe extract (iscador): a meta-analysis. Evid Based Complement Alternat Med. 2012:219402. doi:10.1155/2012/219402 PubMedGoogle Scholar
  59. 59.
    Kienle GS, Kiene H (2010) Review article: influence of Viscum album L. (European mistletoe) extracts on quality of life in cancer patients: a systematic review of controlled clinical studies. Integr Cancer Ther 9:142–157. doi:10.1177/1534735410369673 PubMedCrossRefGoogle Scholar
  60. 60.
    Orange M, Fonseca M, Lace A, Laue HB, Geider S (2010) Durable tumour responses following primary high dose induction with mistletoe extracts: two case reports. Eur J Integr Med 2:63–69CrossRefGoogle Scholar
  61. 61.
    Orange M, Lace A, Fonseca MP, Laue BH, Geider S, Kienle GS (2012) Durable regression of primary cutaneous B-cell lymphoma following fever-inducing mistletoe treatment: two case reports. Global Adv Health Med 1:18–25CrossRefGoogle Scholar
  62. 62.
    Lee CH, Kim JK, Kim HY, Park SM, Lee SM (2009) Immunomodulating effects of Korean mistletoe lectin in vitro and in vivo. Int Immunopharmacol 9:1555–1561. doi:10.1016/j.intimp.2009.09.011 PubMedCrossRefGoogle Scholar
  63. 63.
    Huber R, Ludtke H, Wieber J, Beckmann C (2011) Safety and effects of two mistletoe preparations on production of Interleukin-6 and other immune parameters: a placebo controlled clinical trial in healthy subjects. BMC Complement Altern Med 11:116. doi:10.1186/1472-6882-11-116 PubMedCrossRefGoogle Scholar
  64. 64.
    Thies A, Dautel P, Meyer A, Pfuller U, Schumacher U (2008) Low-dose mistletoe lectin-I reduces melanoma growth and spread in a scid mouse xenograft model. Br J Cancer 98:106–112. doi:10.1038/sj.bjc.6604106 PubMedCrossRefGoogle Scholar
  65. 65.
    Ma YH, Cheng WZ, Gong F, Ma AL, Yu QW, Zhang JY, Hu CY, Chen XH, Zhang DQ (2008) Active Chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses. World J Gastroenterol 14:5274–5281PubMedCrossRefGoogle Scholar
  66. 66.
    Park HJ, Hong JH, Kwon HJ, Kim Y, Lee KH, Kim JB, Song SK (2010) TLR4-mediated activation of mouse macrophages by Korean mistletoe lectin-C (KML-C). Biochem Biophys Res Commun 396:721–725. doi:10.1016/j.bbrc.2010.04.169 PubMedCrossRefGoogle Scholar
  67. 67.
    Abagyan RA, Batalov S (1997) Do aligned sequences share the same fold? J Mol Biol 273:355–368PubMedCrossRefGoogle Scholar
  68. 68.
    Peri F, Piazza M (2012) Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv 30:251–260. doi:10.1016/j.biotechadv.2011.05.014 PubMedCrossRefGoogle Scholar
  69. 69.
    Biswas SK, Lopez-Collazo E (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 30:475–487. doi:10.1016/j.it.2009.07.009 PubMedCrossRefGoogle Scholar
  70. 70.
    Benwell RK, Lee DR (2010) Essential and synergistic roles of IL1 and IL6 in human Th17 differentiation directed by TLR ligand-activated dendritic cells. Clin Immunol 134:178–187. doi:10.1016/j.clim.2009.09.013 PubMedCrossRefGoogle Scholar
  71. 71.
    Muthing J, Meisen I, Kniep B et al (2005) Tumor-associated CD75s gangliosides and CD75s-bearing glycoproteins with Neu5Acalpha2-6Galbeta1-4GlcNAc-residues are receptors for the anticancer drug rViscumin. FASEB J 19:103–105. doi:10.1096/fj.04-2494fje PubMedGoogle Scholar
  72. 72.
    Branden C, Tooze J (1999) Introduction to protein structure. Garland Science, New YorkGoogle Scholar
  73. 73.
    Greene LH, Lewis TE, Addou S et al (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–D297. doi:10.1093/nar/gkl959 PubMedCrossRefGoogle Scholar
  74. 74.
    Hobohm U (2005) Fever therapy revisited. Br J Cancer 92:421–425. doi:10.1038/sj.bjc.6602386 PubMedGoogle Scholar
  75. 75.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506 PubMedCrossRefGoogle Scholar
  76. 76.
    Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556PubMedCrossRefGoogle Scholar
  77. 77.
    Gandhi NM, Morales A, Lamm DL (2013) Bacillus Calmette–Guerin immunotherapy for genitourinary cancer. BJU Int. doi:10.1111/j.1464-410X.2012.11754.x
  78. 78.
    Kimura NT, Taniguchi S, Aoki K, Baba T (1980) Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res 40:2061–2068PubMedGoogle Scholar
  79. 79.
    Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 102:755–760. doi:10.1073/pnas.0408422102 PubMedCrossRefGoogle Scholar
  80. 80.
    Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652. doi:10.1158/0008-5472.CAN-06-0716 PubMedCrossRefGoogle Scholar
  81. 81.
    Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Hoffman RM (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–998. doi:10.1002/jcb.22078 PubMedCrossRefGoogle Scholar
  82. 82.
    Kimura H, Zhang L, Zhao M, Hayashi K, Tsuchiya H, Tomita K, Bouvet M, Wessels J, Hoffman RM (2010) Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 43:41–48. doi:10.1111/j.1365-2184.2009.00652.x PubMedCrossRefGoogle Scholar
  83. 83.
    Liu F, Zhang L, Hoffman RM, Zhao M (2010) Vessel destruction by tumor-targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle 9:4518–4524PubMedGoogle Scholar
  84. 84.
    Momiyama M, Zhao M, Kimura H, Tran B, Chishima T, Bouvet M, Endo I, Hoffman RM (2012) Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle 11:628–632. doi:10.4161/cc.11.3.19116 PubMedCrossRefGoogle Scholar
  85. 85.
    Agrawal N, Bettegowda C, Cheong I et al (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA 101:15172–15177. doi:10.1073/pnas.0406242101 PubMedCrossRefGoogle Scholar
  86. 86.
    Kanzler H, Barrat FJ, Hessel EM, Coffman RL (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13:552–559. doi:10.1038/nm1589 PubMedCrossRefGoogle Scholar
  87. 87.
    Krishnan J, Lee G, Choi S (2009) Drugs targeting Toll-like receptors. Arch Pharm Res 32:1485–1502. doi:10.1007/s12272-009-2100-6 PubMedCrossRefGoogle Scholar
  88. 88.
    Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C (2012) Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 7:29–54. doi:10.1007/s11523-012-0213-1 PubMedCrossRefGoogle Scholar
  89. 89.
    Zoglmeier C, Bauer H, Norenberg D et al (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17:1765–1775. doi:10.1158/1078-0432.CCR-10-2672 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudia Maletzki
    • 1
  • Michael Linnebacher
    • 1
  • Rajkumar Savai
    • 2
  • Uwe Hobohm
    • 3
  1. 1.University of RostockRostockGermany
  2. 2.Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
  3. 3.University of Applied SciencesGiessenGermany

Personalised recommendations