Skip to main content

Advertisement

Log in

A novel melittin-MhIL-2 fusion protein inhibits the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In the current study, we produced a novel fusion protein (melittin-mutant human interleukin 2, melittin-MhIL-2) comprising a mutant human interleukin 2 (Arg88/Ala125) genetically linked to melittin. The plasmid pET15b-melittin-MhIL-2 (Arg88/Ala125) was transformed into E. coli for protein expression. The expressed melittin-MhIL-2 protein was purified using a series of purification steps. The interleukin 2 (IL-2) activity of melittin-MhIL-2 fusion protein was compared with recombinant human interleukin 2 (rhIL-2) for its ability to induce CTLL-2 proliferation. Moreover, the fusion protein directly inhibits the growth of human ovarian cancer SKOV3 cells in vitro. In an in vivo initial experiment, the fusion protein inhibited tumor growth in ovarian cancer mice. In conclusion, we generated a novel melittin-MhIL-2 fusion protein that retained functional activity of IL-2 and melittin and inhibited tumor growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramirez I, Chon HS, Apte SM (2011) The role of surgery in the management of epithelial ovarian cancer. Cancer Control 18:22–30

    PubMed  Google Scholar 

  2. Al-Alem L, Southard RC, Kilgore MW, Curry TE (2011) Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS ONE 6:e16179

    Article  PubMed  CAS  Google Scholar 

  3. Al-Bahlani S, Fraser M, Wong AY, Sayan BSR, Melino G, Tsang BK (2011) P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism. Oncogene 30:4219–4230

    Article  PubMed  CAS  Google Scholar 

  4. Jain A, Dubashi B, Reddy KS, Jain P (2011) Weekly paclitaxel in ovarian cancer-the latest success story. Curr Oncol 18:16–17

    Article  PubMed  CAS  Google Scholar 

  5. Reisfeld RA, Becker JC, Gillies SD (1997) Immunocytokines: a new approach to immunotherapy of melanoma. Melanoma Res 7(Suppl 2):S99–106

    PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Yang JC, White DE, Steinberg SM (1998) Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg 228:307–319

    Article  PubMed  CAS  Google Scholar 

  7. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of lymphocytes from normal human bone marrows. Science 193:1007–1008

    Article  PubMed  CAS  Google Scholar 

  8. Henney CS, Kuribayashi K, Kern DE, Gillis S (1981) Interleukin 2 augments natural killer cell activity. Nature 291:335–338

    Article  PubMed  CAS  Google Scholar 

  9. Ortaldo JR, Mason AT, Gerard JP, Henderson LE, Farrar W, Hopkins RF 3rd, Herberman RB, Rabin H (1984) Effects of natural and recombinant IL 2 on regulation of IFN gamma production and natural killer activity: lack of involvement of the Tac antigen for these immunoregulatory effects. J Immunol 133:779–783

    PubMed  CAS  Google Scholar 

  10. Siegel JP, Puri RK (1991) Interleukin-2 toxicity. J Clin Oncol 9:694–704

    PubMed  CAS  Google Scholar 

  11. Maas RA, Dullens HF, Den Otter W (1993) Interleukin-2 in cancer treatment: disappointing or (still) promising? A review. Cancer Immunol Immunother 36:141–148

    Article  PubMed  CAS  Google Scholar 

  12. Shanafelt AB, Lin Y, Shanafelt MC, Forte CP, Dubois-Stringfellow N, Carter C, Gibbons JA, Cheng SL, Delaria KA, Fleischer R, Greve JM, Gundel R, Harris K, Kelly R, Koh B, Li Y, Lantz L, Mak P, Neyer L, Plym MJ, Roczniak S, Serban D, Thrift J, Tsuchiyama L, Wetzel M, Wong M, Zolotorev A (2000) A T-cell-selective interleukin-2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol 6:1197–1202

    Article  Google Scholar 

  13. Ju G, Collins L, Kaffka KL, Tsien W, Simpson R (1987) Structure-function analysis of human interleukin-2. Identification of amino acid residues required for biological activity. J Biol Chem 262:5723–5731

    PubMed  CAS  Google Scholar 

  14. Smith KA (1988) Interleukin-2: inception, impact, and implications. Science 240:1169–1176

    Article  PubMed  CAS  Google Scholar 

  15. Moya G, González LJ, Huerta V, García Y, Morera V, Pérez D, Breña F, Araña M (2002) Isolation and characterization of modified species of a mutated (Cys125-Ala) recombinant human interleukin-2. J Chromatogr A 971:129–142

    Article  PubMed  CAS  Google Scholar 

  16. Liu M, Wang B, Sun G, Qian D, Yan Z, Song X, Ding S (2010) Expression, purification, and characterization of a functional mutant recombinant human interleukin-2. Protein Pept Lett 17:1280–1284

    Article  PubMed  CAS  Google Scholar 

  17. Zhu X, Wang J, Wang R, Zhang X (2000) Immunomodulatory effects of bee venom on S180 sarcoma mice. Pharmacol Clin Chin Materia Medica 16:24–25

    CAS  Google Scholar 

  18. Wang Q, Lu Y, Zang Y, Zhang Y (2000) Study on the immune-regulating mechanism of the bee venom. Chin J Immunol 16:542–544

    CAS  Google Scholar 

  19. Liu L, Ling C, Huang X (2003) Study on purification of melittin and its effect on anti-tumor in vitro. Chin J Biochem Pharm 24:163–166

    CAS  Google Scholar 

  20. Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ, Hong JT (2012) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol 258:72–81

    Article  PubMed  CAS  Google Scholar 

  21. Saini SS, Chopra AK, Peterson JW (1999) Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon 37:1605–1619

    Article  PubMed  CAS  Google Scholar 

  22. Arora AS, de Groen PC, Croall DE, Emori Y, Gores GJ (1996) Hepatocellular carcinoma cells resist necrosis during anoxia by preventing phospholipase-mediated calpain activation. J Cell Physiol 167:434–442

    Article  PubMed  CAS  Google Scholar 

  23. Kubo H, Loegering DA, Adophson CR, Gleich GJ (1999) Cytotoxic properties of eosinophil granule major basic protein for tumor cells. Int Arch Allergy Immunol 118:426–428

    Article  PubMed  CAS  Google Scholar 

  24. Lazarev VN, Parfenova TM, Gularyan SK, Misyurina OY, Akopian TA, Govorun VM (2002) Induced expression of melittin, an antimicrobial peptide, inhibits infection by Chlamydia trachomatis and Mycoplasma hominis in a Hela cell line. Int J Antimicrob Agents 19:133–137

    Article  PubMed  CAS  Google Scholar 

  25. Tarhini AA, Agarwala SS (2005) Interleukin-2 for the treatment of melanoma. Curr Opin Investig Drugs 6:1234–1239

    PubMed  CAS  Google Scholar 

  26. Wang C, Chen T, Zhang N, Yang M, Li B, Lü X, Cao X, Ling C (2009) Melittin, a major component of Bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating caMKII-TAK1-JNK/p38 and inhibiting iκBα kinase-NFκB. J Biol Chem 284:3804–3813

    Article  PubMed  CAS  Google Scholar 

  27. Park JH, Jeong YJ, Park KK, Cho HJ, Chung IK, Min KS, Kim M, Lee KG, Yeo JH, Park KK, Chang YC (2010) Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol Cells 29:209–215

    Article  PubMed  CAS  Google Scholar 

  28. Park MH, Choi MS, Kwak DH, Oh KW, Yoon DY, Han SB, Song HS, Song MJ, Hong JT (2011) Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-ΚB. Prostate 71:801–812

    Article  PubMed  CAS  Google Scholar 

  29. Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z (2008) Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology 47:1964–1973

    Article  PubMed  CAS  Google Scholar 

  30. Holle L, Song W, Holle E, Wei Y, Wagner T, Yu X (2003) A matrix metalloproteinase 2 cleavable melittin/avidin conjugate specifically targets tumor cells in vitro and in vivo. Int J Oncol 22:93–98

    PubMed  CAS  Google Scholar 

  31. Belmont HJ, Price-Schiavi S, Liu B, Card KF, Lee HI, Han KP, Wen J, Tang S, Zhu X, Merrill J, Chavillaz PA, Wong JL, Rhode PR, Wong HC (2006) Potent antitumor activity of a tumor-specific soluble TCR/IL-2 fusion protein. Clin Immunol 121:29–39

    Article  PubMed  CAS  Google Scholar 

  32. Penafuerte C, Bautista-Lopez N, Boulassel MR, Routy JP, Galipeau J (2009) The human ortholog of granulocyte macrophage colony-stimulating factor and interleukin-2 fusion protein induces potent ex vivo natural killer cell activation and maturation. Cancer Res 69:9020–9028

    Article  PubMed  CAS  Google Scholar 

  33. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897

    Article  PubMed  CAS  Google Scholar 

  34. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guirong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Zong, J., Liu, Z. et al. A novel melittin-MhIL-2 fusion protein inhibits the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. Cancer Immunol Immunother 62, 889–895 (2013). https://doi.org/10.1007/s00262-013-1401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1401-2

Keywords

Navigation