Cancer Immunology, Immunotherapy

, Volume 62, Issue 4, pp 737–746 | Cite as

Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma

  • Roniel Cabrera
  • Miguel Ararat
  • Yiling Xu
  • Todd Brusko
  • Clive Wasserfall
  • Mark A. Atkinson
  • Lung Ji Chang
  • Chen Liu
  • David R. Nelson
Original Article


Hepatocellular carcinoma (HCC) is a difficult to treat cancer characterized by poor tumor immunity with only one approved systemic drug, sorafenib. If novel combination treatments are to be developed with immunological agents, the effects of sorafenib on tumor immunity are important to understand. In this study, we investigate the impact of sorafenib on the CD4+CD25− effector T cells (Teff) and CD4+CD25+ regulatory T cells (Tregs) from patients with HCC. We isolated Teff and Treg from peripheral mononuclear cells of HCC patients to determine immune reactivity by thymidine incorporation, ELISA and flow cytometry. Teff cultured alone or with Treg were supplemented with different concentrations of sorafenib. The effects of sorafenib on Teff responses were dose-dependent. Pharmacologic doses of sorafenib decreased Teff activation by down regulating CD25 surface expression. In contrast, sub-pharmacologic concentrations of sorafenib resulted in Teff activation. These low doses of sorafenib in the Teff cultures led to a significant increase in Teff proliferation, IL2 secretion and up-regulation of CD25 expression on the cell surface. In addition, low doses of sorafenib in the suppression Teff/Treg cocultures restored Teff responses by eliminating Treg suppression. The loss of Treg suppressive function correlated with an increase in IL2 and IL6 secretion. Our findings show that sub-pharmacologic doses of sorafenib impact subsets of T cells differently, selectively increasing Teff activation while blocking Treg function. In conclusion, this study describes novel immune activating properties of low doses of sorafenib by promoting immune responsiveness in patients with HCC.


Sorafenib T cell Regulatory T cells Hepatocellular carcinoma HCV 



The authors want to thank Neal Benson and Lynn Combee for expert technical assistance with the flow cytometer experiments. Research support for this study provided in part by National Institutes of Health/National Center for Research Resources Award UL1 RR029890 and National Institutes of Health/National Cancer Institute award K24CA139570.

Conflict of interest

Dr. Cabrera is a speaker, consultant, and has research grants from Bayer. Dr. Nelson is a consultant and has research grants from Bayer and Human Genome Science.

Supplementary material

262_2012_1380_MOESM1_ESM.jpg (158 kb)
Supplemental Figure 1 Low Doses of sorafenib does not impact cell function in controls. CD4+ T effector cells from normal healthy controls (NHC) and patients with well compensated cirrhosis but no cancer (DC) (n=6) were stimulated with PHA without sorafenib and with low doses of sorafenib (0.1uM and 1uM). No significant differences were observed in the normal healthy controls and disease controls when their PBMCs were stimulated with and without sorafenib. Supplementary material 1 (JPEG 158 kb)


  1. 1.
    El-Serag HB, Marrero JA, Rudolph L, Reddy KR (2008) Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134:1752–1763PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 1:25–34CrossRefGoogle Scholar
  5. 5.
    Cao M, Cabrera R, Xu Y, Firpi R, Zhu H, Liu C, Nelson DR (2007) Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Lab Invest 87:582–590PubMedGoogle Scholar
  6. 6.
    Cabrera R, Ararat M, Cao M, Xu Y, Wasserfall C, Atkinson MA, Liu C, Nelson DR (2010) Hepatocellular carcinoma immunopathogenesis: clinical evidence for global T cell defects and an immunomodulatory role for soluble CD25 (sCD25). Dig Dis Sci 55:484–495PubMedCrossRefGoogle Scholar
  7. 7.
    Li H, Zhao H, Yu J, Su Y, Cao S, An X, Ren X (2011) Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunol Immunother 60:1587–1596PubMedCrossRefGoogle Scholar
  8. 8.
    Feng X, Li B, Ye H, Long D (2011) Increased frequency of CD4(+)CD25 (high)FoxP3 (+) regulatory T Cells in patients with hepatocellular carcinoma. Arch Immunol Ther Exp (Warsz) 59:309–314CrossRefGoogle Scholar
  9. 9.
    Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou J, Ding T, Pan W, Zhu LY, Li L, Zheng L (2009) Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 125:1640–1648PubMedCrossRefGoogle Scholar
  11. 11.
    Cabrera R, Ararat M, Eksioglu EA, Cao M, Xu Y, Wasserfall C, Atkinson MA, Liu C, Nelson DR (2010) Influence of serum and soluble CD25 (sCD25) on regulatory and effector T-cell function in hepatocellular carcinoma. Scand J Immunol 72:293–301PubMedCrossRefGoogle Scholar
  12. 12.
    Houben R, Voigt H, Noelke C, Hofmeister V, Becker J, Schrama D (2009) MAPK-independent impairment of T-cell responses by the multikinase inhibitor sorafenib. Mol Cancer Ther 8:433–440PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao W, Gu YH, Song R, Qu BQ (2008) Xu Q Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 22:1226–1233PubMedCrossRefGoogle Scholar
  14. 14.
    Toso C, Mentha G, Majno P (2011) Liver transplantation for hepatocellular carcinoma: five steps to prevent recurrence. Am J Transplant 1:2031–2035CrossRefGoogle Scholar
  15. 15.
    Villanueva A, Llovet JM (2011) Targeted therapies for hepatocellular carcinoma. Gastroenterology 140:1410–1426PubMedCrossRefGoogle Scholar
  16. 16.
    Blanchet B, Billemont B, Cramard J, Benichou AS, Chhun S, Harcouet L, Ropert S, Dauphin A, Goldwasser F, Tod M (2009) Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal 49:1109–1114PubMedCrossRefGoogle Scholar
  17. 17.
    Lavarone M, Cabibbo G, Piscaglia F, Zavaglia C, Grieco A, Villa E, Cammà C (2011) On behalf of the SOFIA (Sorafenib Italian Assessment) study group. Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology 54:2055–2063CrossRefGoogle Scholar
  18. 18.
    Lencioni R, Marrero J, Venook A, Ye SL, Kudo M (2010) Design and rationale for the non-interventional global investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafenib (GIDEON) study. Int J Clin Pract 64:1034–1041PubMedCrossRefGoogle Scholar
  19. 19.
    Heinz WJ, Kahle K, Helle-Beyersdorf A, Schirmer D, Lenker U, Keller D, Langmann P, Klinker H (2011) High-performance liquid chromatographic method for the determination of sorafenib in human serum and peritoneal fluid. Cancer Chemother Pharmacol 68:239–245PubMedCrossRefGoogle Scholar
  20. 20.
    Abou-Alfa GK, Amadori D, Santoro A, Figer A, De Greve J, Lathia C, Voliotis D, Anderson S, Moscovici M, Ricci S (2011) Safety and efficacy of sorafenib in patients with hepatocellular carcinoma (HCC) and Child–Pugh A versus B cirrhosis. Gastrointest Cancer Res 42:40–44CrossRefGoogle Scholar
  21. 21.
    Arteaga C, Baselga J (2004) Tyrosyne kinase inhibitors: why does the current process of clinical development not apply to them? Cancer Cell 5:525–531PubMedCrossRefGoogle Scholar
  22. 22.
    Turk JL, Parker D (1982) Effect of cyclophosphamide on immunological control mechanisms. Immunol Rev 65:99–113PubMedCrossRefGoogle Scholar
  23. 23.
    Cao M, Xu Y, Youn JI, Cabrera R, Zhang X, Gabrilovich D, Nelson DR, Liu C (2011) Kinase inhibitor sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Invest 9:598–608CrossRefGoogle Scholar
  24. 24.
    Krusch M, Salih J, Schlicke M, Baessler T, Kampa KM, Mayer F, Salih HR (2009) The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro. J Immunol 183:8286–8294PubMedCrossRefGoogle Scholar
  25. 25.
    Hipp MM, Hilf N, Walter S, Werth D, Brauer KM, Radsak MP, Weinschenk T, Singh-Jasuja H, Brossart P (2008) Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111:5610–5620PubMedCrossRefGoogle Scholar
  26. 26.
    Busse A, Asemissen AM, Nonnenmacher A, Braun F, Ochsenreither S, Stather D, Fusi A, Schmittel A, Miller K, Thiel E, Keilholz U (2011) Immunomodulatory effects of sorafenib on peripheral immune effector cells in metastatic renal cell carcinoma. Eur J Cancer 47:690–696PubMedCrossRefGoogle Scholar
  27. 27.
    Brusko TM, Wasserfall CH, Hulme MA, Cabrera R, Schatz D, Atkinson MA (2009) Influence of membrane CD25 stability on T lymphocyte activity: implications for immunoregulation. PLoS One 4:e7980PubMedCrossRefGoogle Scholar
  28. 28.
    Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645PubMedCrossRefGoogle Scholar
  29. 29.
    Wang G, Khattar M, Guo Z, Miyahara Y, Linkes SP, Sun Z, He X, Stepkowski SM, Chen W (2010) IL-2-deprivation and TGF-beta are two non-redundant suppressor mechanisms of CD4+CD25+ regulatory T cell which jointly restrain CD4+CD25− cell activation. Immunol Lett 132:61–68PubMedCrossRefGoogle Scholar
  30. 30.
    Von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344CrossRefGoogle Scholar
  31. 31.
    Feinerman O, Jentsch G, Tkach KE, Coward JW, Hathorn MM, Sneddon MW, Emonet T, Smith KA, Altan-Bonnet G (2010) Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol Syst Biol 6:437PubMedCrossRefGoogle Scholar
  32. 32.
    Bensinger SJ, Walsh PT, Zhang J, Carroll M, Parsons R, Rathmell JC, Thompson CB, Burchill MA, Farrar MA, Turka LA (2004) Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 172:5287–5296PubMedGoogle Scholar
  33. 33.
    Walsh PT, Buckler JL, Zhang J, Gelman AE, Dalton NM, Taylor DK, Bensinger SJ, Hancock WW, Turka LA (2006) PTEN inhibits IL-2 receptor-mediated expansion of CD4+CD25+ Tregs. Clin Invest 116:2521–2531Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roniel Cabrera
    • 1
  • Miguel Ararat
    • 1
  • Yiling Xu
    • 1
  • Todd Brusko
    • 2
  • Clive Wasserfall
    • 2
  • Mark A. Atkinson
    • 2
  • Lung Ji Chang
    • 3
  • Chen Liu
    • 2
  • David R. Nelson
    • 1
  1. 1.Department of Medicine, Section of Hepatobiliary DiseasesUniversity of FloridaGainesvilleUSA
  2. 2.Department of Pathology, Immunology, and Laboratory MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations