Skip to main content

Advertisement

Log in

Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

MUC1 is a transmembrane mucin with important functions in normal and transformed cells, carried out by the extracellular domain or the cytoplasmic tail. A characteristic feature of the MUC1 extracellular domain is the variable number of tandem repeats (VNTR) region. Alternative splicing may regulate MUC1 expression and possibly function. We developed an RT-PCR method for efficient isolation of MUC1 mRNA isoforms that allowed us to evaluate the extent of alternative splicing of MUC1 and elucidate some of the rules that govern this process. We cloned and analyzed 21, 24, and 36 isoforms from human tumor cell lines HeLa, MCF7, and Jurkat, respectively, and 16 from normal activated human T cells. Among the 78 MUC1 isoforms we isolated, 76 are new and different cells showed varied MUC1 expression patterns. The VNTR region of exon 2 was recognized as an intron with a fixed 5′ splice site but variable 3′ splice sites. We also report that the 3506 A/G SNP in exon 2 can regulate 3′ splice sites selection in intron 1 and produce different MUC1 short isoform proteins. Furthermore, the SNP A to G mutation was also observed in vivo, during de novo tumor formation in MUC1+/−KrasG12D/+PtenloxP/loxP mice. No specific functions have been associated with previously reported short isoforms. We now report that one new G SNP-associated isoform MUC1/Y-LSP, but not the A SNP-associated isoform MUC1/Y, inhibits tumor growth in immunocompetent but not immunocompromised mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30(1):13–19

    Article  PubMed  CAS  Google Scholar 

  2. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302(5653):2141–2144

    Article  PubMed  CAS  Google Scholar 

  3. Xing Y, Lee C (2006) Alternative splicing and RNA selection pressure–evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7(7):499–509

    Article  PubMed  CAS  Google Scholar 

  4. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126(1):37–47

    Article  PubMed  CAS  Google Scholar 

  5. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415

    Article  PubMed  CAS  Google Scholar 

  6. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476

    Article  PubMed  CAS  Google Scholar 

  7. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463

    Article  PubMed  CAS  Google Scholar 

  8. Stamm S (2002) Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum Mol Genet 11(20):2409–2416

    Article  PubMed  CAS  Google Scholar 

  9. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17(4):419–437

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22(5):535–546

    Article  PubMed  CAS  Google Scholar 

  11. Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5(5):389–396

    Article  PubMed  CAS  Google Scholar 

  12. Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64(21):7647–7654

    Article  PubMed  CAS  Google Scholar 

  13. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM (2007) Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 8(4):349–357

    Article  PubMed  CAS  Google Scholar 

  14. Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8(10):749–761

    Article  PubMed  CAS  Google Scholar 

  15. Kim E, Goren A, Ast G (2008) Insights into the connection between cancer and alternative splicing. Trends Genet 24(1):7–10

    Article  PubMed  CAS  Google Scholar 

  16. Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90(1–2):41–54

    PubMed  CAS  Google Scholar 

  17. Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579(9):1900–1903

    Article  PubMed  CAS  Google Scholar 

  18. Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, Durand M, Couture S, Froehlich U, Lapointe E, Lucier JF, Thibault P, Rancourt C, Tremblay K, Prinos P, Chabot B, Elela SA (2009) Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 16(6):670–676

    Article  PubMed  CAS  Google Scholar 

  19. Li HR, Wang-Rodriguez J, Nair TM, Yeakley JM, Kwon YS, Bibikova M, Zheng C, Zhou L, Zhang K, Downs T, Fu XD, Fan JB (2006) Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Res 66(8):4079–4088

    Article  PubMed  CAS  Google Scholar 

  20. Zhang M, Gish W (2006) Improved spliced alignment from an information theoretic approach. Bioinformatics 22(1):13–20

    Article  PubMed  Google Scholar 

  21. Theodoropoulos G, Carraway KL (2007) Molecular signaling in the regulation of mucins. J Cell Biochem 102(5):1103–1116

    Article  PubMed  CAS  Google Scholar 

  22. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293

    Article  PubMed  CAS  Google Scholar 

  23. Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J (1992) Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem 267(9):6171–6177

    PubMed  CAS  Google Scholar 

  24. Fontenot JD, Finn OJ, Dales N, Andrews PC, Montelaro RC (1993) Synthesis of large multideterminant peptide immunogens using a poly-proline beta-turn helix motif. Pept Res 6(6):330–336

    PubMed  CAS  Google Scholar 

  25. Fontenot JD, Tjandra N, Bu D, Ho C, Montelaro RC, Finn OJ (1993) Biophysical characterization of one-, two-, and three-tandem repeats of human mucin (muc-1) protein core. Cancer Res 53(22):5386–5394

    PubMed  CAS  Google Scholar 

  26. Fukuda M (2002) Roles of mucin-type O-glycans in cell adhesion. Biochim Biophys Acta 1573(3):394–405

    Article  PubMed  CAS  Google Scholar 

  27. Hilkens J, Ligtenberg MJ, Vos HL, Litvinov SV (1992) Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci 17(9):359–363

    Article  PubMed  CAS  Google Scholar 

  28. Carlos CA, Dong HF, Howard OM, Oppenheim JJ, Hanisch FG, Finn OJ (2005) Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J Immunol 175(3):1628–1635

    PubMed  CAS  Google Scholar 

  29. Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9(12):874–885

    Article  PubMed  CAS  Google Scholar 

  30. Barnd DL, Lan MS, Metzgar RS, Finn OJ (1989) Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci USA 86(18):7159–7163

    Article  PubMed  CAS  Google Scholar 

  31. Saeland E, van Vliet SJ, Backstrom M, van den Berg VC, Geijtenbeek TB, Meijer GA, van Kooyk Y (2007) The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immunother 56(8):1225–1236

    Article  PubMed  CAS  Google Scholar 

  32. Ren J, Raina D, Chen W, Li G, Huang L, Kufe D (2006) MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol Cancer Res 4(11):873–883

    Article  PubMed  CAS  Google Scholar 

  33. Mahanta S, Fessler SP, Park J, Bamdad C (2008) A minimal fragment of MUC1 mediates growth of cancer cells. PLoS One 3(4):e2054

    Article  PubMed  Google Scholar 

  34. Ren J, Li Y, Kufe D (2002) Protein kinase C delta regulates function of the DF3/MUC1 carcinoma antigen in beta-catenin signaling. J Biol Chem 277(20):17616–17622

    Article  PubMed  CAS  Google Scholar 

  35. Wei X, Xu H, Kufe D (2005) Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7(2):167–178

    Article  PubMed  CAS  Google Scholar 

  36. Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D (2007) The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 27(6):992–1004

    Article  PubMed  CAS  Google Scholar 

  37. Levitin F, Baruch A, Weiss M, Stiegman K, Hartmann ML, Yoeli-Lerner M, Ziv R, Zrihan-Licht S, Shina S, Gat A, Lifschitz B, Simha M, Stadler Y, Cholostoy A, Gil B, Greaves D, Keydar I, Zaretsky J, Smorodinsky N, Wreschner DH (2005) A novel protein derived from the MUC1 gene by alternative splicing and frameshifting. J Biol Chem 280(11):10655–10663

    Article  PubMed  CAS  Google Scholar 

  38. Baruch A, Hartmann M, Zrihan-Licht S, Greenstein S, Burstein M, Keydar I, Weiss M, Smorodinsky N, Wreschner DH (1997) Preferential expression of novel MUC1 tumor antigen isoforms in human epithelial tumors and their tumor-potentiating function. Int J Cancer 71(5):741–749

    Article  PubMed  CAS  Google Scholar 

  39. Rubinstein DB, Karmely M, Ziv R, Benhar I, Leitner O, Baron S, Katz BZ, Wreschner DH (2006) MUC1/X protein immunization enhances cDNA immunization in generating anti-MUC1 alpha/beta junction antibodies that target malignant cells. Cancer Res 66(23):11247–11253

    Article  PubMed  CAS  Google Scholar 

  40. Oosterkamp HM, Scheiner L, Stefanova MC, Lloyd KO, Finstad CL (1997) Comparison of MUC-1 mucin expression in epithelial and non-epithelial cancer cell lines and demonstration of a new short variant form (MUC-1/Z). Int J Cancer 72(1):87–94

    Article  PubMed  CAS  Google Scholar 

  41. Rowse GJ, Tempero RM, VanLith ML, Hollingsworth MA, Gendler SJ (1998) Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res 58(2):315–321

    PubMed  CAS  Google Scholar 

  42. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T (2005) Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11(1):63–70

    Article  PubMed  CAS  Google Scholar 

  43. Budiu RA, Mantia-Smaldone G, Elishaev E, Chu T, Thaller J, McCabe K, Lenzner D, Edwards RP, Vlad AM (2011) Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer. Cancer Immunol Immunother 60(7):975–984

    Article  PubMed  CAS  Google Scholar 

  44. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, Liu X, Wu H (2002) Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32(2):148–149

    Article  PubMed  CAS  Google Scholar 

  45. Budiu RA, Diaconu I, Chrissluis R, Dricu A, Edwards RP, Vlad AM (2009) A conditional mouse model for human MUC1-positive endometriosis shows the presence of anti-MUC1 antibodies and Foxp3+ regulatory T cells. Disease Models Mech 2(11–12):593–603

    Article  CAS  Google Scholar 

  46. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298

    Article  PubMed  CAS  Google Scholar 

  47. Correa I, Plunkett T, Vlad A, Mungul A, Candelora-Kettel J, Burchell JM, Taylor-Papadimitriou J, Finn OJ (2003) Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology 108(1):32–41

    Article  PubMed  CAS  Google Scholar 

  48. Agrawal B, Krantz MJ, Parker J, Longenecker BM (1998) Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res 58(18):4079–4081

    PubMed  CAS  Google Scholar 

  49. Fattorossi A, Battaglia A, Malinconico P, Stoler A, Andreocci L, Parente D, Coscarella A, Maggiano N, Perillo A, Pierelli L, Scambia G (2002) Constitutive and inducible expression of the epithelial antigen MUC1 (CD227) in human T cells. Exp Cell Res 280(1):107–118

    Article  PubMed  CAS  Google Scholar 

  50. Ligtenberg MJ, Gennissen AM, Vos HL, Hilkens J (1991) A single nucleotide polymorphism in an exon dictates allele dependent differential splicing of episialin mRNA. Nucleic Acids Res 19(2):297–301

    Article  PubMed  CAS  Google Scholar 

  51. Ng W, Loh AX, Teixeira AS, Pereira SP, Swallow DM (2008) Genetic regulation of MUC1 alternative splicing in human tissues. Br J Cancer 99(6):978–985

    Article  PubMed  CAS  Google Scholar 

  52. Roberts GC, Smith CW (2002) Alternative splicing: combinatorial output from the genome. Curr Opin Chem Biol 6(3):375–383

    Article  PubMed  CAS  Google Scholar 

  53. Zhu J, Shendure J, Mitra RD, Church GM (2003) Single molecule profiling of alternative pre-mRNA splicing. Science 301(5634):836–838

    Article  PubMed  CAS  Google Scholar 

  54. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18(11):1241–1250

    Article  PubMed  CAS  Google Scholar 

  55. McCarthy EM, Phillips JA 3rd (1998) Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA. Hum Mol Genet 7(9):1491–1496

    Article  PubMed  CAS  Google Scholar 

  56. Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444(7119):580–586

    Article  PubMed  CAS  Google Scholar 

  57. Lian Y, Garner HR (2005) Evidence for the regulation of alternative splicing via complementary DNA sequence repeats. Bioinformatics 21(8):1358–1364

    Article  PubMed  CAS  Google Scholar 

  58. Eperon LP, Estibeiro JP, Eperon IC (1986) The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature 324(6094):280–282

    Article  PubMed  CAS  Google Scholar 

  59. Thompson-Jager S, Domdey H (1987) Yeast pre-mRNA splicing requires a minimum distance between the 5′ splice site and the internal branch acceptor site. Mol Cell Biol 7(11):4010–4016

    PubMed  CAS  Google Scholar 

  60. Carson DD (2008) The cytoplasmic tail of MUC1: a very busy place. Sci Signal 1(27):35

    Article  Google Scholar 

  61. Jia Y, Persson C, Hou L, Zheng Z, Yeager M, Lissowska J, Chanock SJ, Chow WH, Ye W (2010) A comprehensive analysis of common genetic variation in MUC1, MUC5AC, MUC6 genes and risk of stomach cancer. Cancer Causes Control 21(2):313–321

    Article  PubMed  Google Scholar 

  62. Xu Q, Yuan Y, Sun LP, Gong YH, Xu Y, Yu XW, Dong NN, Lin GD, Smith PN, Li RW (2009) Risk of gastric cancer is associated with the MUC1 568 A/G polymorphism. Int J Oncol 35(6):1313–1320

    PubMed  CAS  Google Scholar 

  63. David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24(21):2343–2364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (CA056103 and CA073743 to O.J.F. and CA163462 to A.M.V), Department of Defense (OC093429 to AMV), National Science Foundation (MCB-0842725 to C.M.), and the Nathan Arenson Fund (O.J.F.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Zhang or Olivera J. Finn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Vlad, A., Milcarek, C. et al. Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms. Cancer Immunol Immunother 62, 423–435 (2013). https://doi.org/10.1007/s00262-012-1325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1325-2

Keywords

Navigation