Skip to main content

Advertisement

Log in

A knockdown of Maml1 that results in melanoma cell senescence promotes an innate and adaptive immune response

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Maml1 is emerging as a coactivator of many signaling pathways, including the Notch and Wnt pathways. Targeting Maml1 in melanoma cells efficiently knocks down the downstream transcriptional repressors Hey1 and Hes1, resulting in melanoma cell senescence, cellular differentiation, and increased melanin production. Significantly, higher IFNβ and chemokine gene transcripts have been observed, together with increased STAT1 and decreased STAT3 and NF-κB signaling activities. Although decreased cell proliferation contributes to slower tumor growth in vivo, the depletion of NK and CD8+ T cells in an shMaml1-B16 tumor carrier mouse leads to more rapid tumor growth than that observed in control shC002-B16 tumors. This result demonstrates that the knockdown of Maml1 transcription and function contributes to increased immune surveillance. The knockdown of Maml1 transcription in the human melanoma cell line M537 also results in senescence, IFNβ upregulation, increased chemokine gene expression, and greater NK and CD8+ T cell migration in a transwell system. This study demonstrated that targeting Maml1-induced tumor cell senescence and differentiation may alter the tumor microenvironment and cytokine and chemokine profiles and may also promote innate and adaptive immune cell infiltration and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Maml1 :

Mastermind-like protein-1

siMaml1 :

Small interfering Maml1 RNA

Hes1:

Hairy/enhancer-of-split 1

Hey1:

Hairy/enhancer-of-split related with YRPW motif 1

CCL2:

MCP-1, monocyte chemoattractant-1

CCL3:

Macrophage inflammatory protein-1α (MIP-1α)

CCL5:

Regulated upon activation normal T cell expressed and secreted (RANTES)

CCL18:

Macrophage inflammatory protein-4 (MIP-4, PARC)

CXCL9:

Monokine induced by gamma interferon (Mig)

CXCL10:

Interferon gamma-induced protein-10 (IP-10)

CXCL11:

Interferon-inducible T cell alpha chemoattractant (I-TAC, IP-9)

References

  1. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    Article  PubMed  CAS  Google Scholar 

  2. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  PubMed  CAS  Google Scholar 

  3. Crea F, Duhagon MA, Farrar WL, Danesi R (2011) Pharmacogenomics and cancer stem cells: a changing landscape? Trends Pharmacol Sci 32:487–494

    Article  PubMed  CAS  Google Scholar 

  4. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767

    Article  PubMed  CAS  Google Scholar 

  5. Hansson EM, Lendahl U, Chapman G (2004) Notch signaling in development and disease. Semin Cancer Biol 14:320–328

    Article  PubMed  CAS  Google Scholar 

  6. Nickoloff BJ, Osborne BA, Miele L (2003) Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22:6598–6608

    Article  PubMed  CAS  Google Scholar 

  7. Kang S, Yang C, Luo R (2008) Induction of CCL2 by siMAML1 through upregulation of TweakR in melanoma cells. Biochem Biophys Res Commun 372:629–633

    Article  PubMed  CAS  Google Scholar 

  8. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  9. Alves-Guerra MC, Ronchini C, Capobianco AJ (2007) Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 67:8690–8698

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T (2008) Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 28:7427–7441

    Article  PubMed  CAS  Google Scholar 

  11. Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ (2008) Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 27:1489–1500

    Article  PubMed  CAS  Google Scholar 

  12. Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA (2009) Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol 184:101–112

    Article  PubMed  CAS  Google Scholar 

  13. Hatton BA, Villavicencio EH, Pritchard J, LeBlanc M, Hansen S, Ulrich M, Ditzler S, Pullar B, Stroud MR, Olson JM (2010) Notch signaling is not essential in sonic hedgehog-activated medulloblastoma. Oncogene 29:3865–3872

    Article  PubMed  CAS  Google Scholar 

  14. Sang L, Roberts JM, Coller HA (2010) Hijacking HES1: how tumors co-opt the anti-differentiation strategies of quiescent cells. Trends Mol Med 16:17–26

    Google Scholar 

  15. Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG (2010) The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 16:6060–6070

    Article  PubMed  CAS  Google Scholar 

  16. Sang L, Coller HA (2009) Fear of commitment: Hes1 protects quiescent fibroblasts from irreversible cellular fates. Cell Cycle 8:2161–2167

    Article  PubMed  CAS  Google Scholar 

  17. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100

    Article  PubMed  CAS  Google Scholar 

  18. Wu L, Kobayashi K, Sun T, Gao P, Liu J, Nakamura M, Weisberg E, Mukhopadhyay NK, Griffin JD (2004) Cloning and functional characterization of the murine mastermind-like 1 (Maml1) gene. Gene 328:153–165

    Article  PubMed  CAS  Google Scholar 

  19. Jin B, Shen H, Lin S, Li JL, Chen Z, Griffin JD, Wu L (2010) The mastermind-like 1 (MAML1) co-activator regulates constitutive NF-kappaB signaling and cell survival. J Biol Chem 285:14356–14365

    Google Scholar 

  20. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  21. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188

    Article  PubMed  CAS  Google Scholar 

  22. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  PubMed  CAS  Google Scholar 

  23. Kang S, Xie J, Ma S, Liao W, Zhang J, Luo R (2010) Targeted knock down of CCL22 and CCL17 by siRNA during DC differentiation and maturation affects the recruitment of T subsets. Immunobiology 215:153–162

    Google Scholar 

  24. Hiroi M, Ohmori Y (2003) Constitutive nuclear factor kappaB activity is required to elicit interferon-gamma-induced expression of chemokine CXC ligand 9 (CXCL9) and CXCL10 in human tumour cell lines. Biochem J 376:393–402

    Article  PubMed  CAS  Google Scholar 

  25. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107:2112–2122

    Article  PubMed  CAS  Google Scholar 

  26. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9:377–383

    Article  PubMed  CAS  Google Scholar 

  27. Kavanagh E, Joseph B (2011) The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochim Biophys Acta 1816:50–56

    Google Scholar 

  28. Jin B, Shen H, Lin S, Li JL, Chen Z, Griffin JD, Wu L (2010) The mastermind-like 1 (MAML1) co-activator regulates constitutive NF-kappaB signaling and cell survival. J Biol Chem 285:14356–14365

    Article  PubMed  CAS  Google Scholar 

  29. Cao Q, Kaur C, Wu CY, Lu J, Ling EA (2011) Nuclear factor-kappa beta regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience 192:140–154

    Google Scholar 

  30. Bhoopathi P, Chetty C, Dontula R, Gujrati M, Dinh DH, Rao JS, Lakka SS (2011) SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway. Cancer Res 71:4908–4919

    Google Scholar 

  31. Lee JH, Suk J, Park J, Kim SB, Kwak SS, Kim JW, Lee CH, Byun B, Ahn JK, Joe CO (2009) Notch signal activates hypoxia pathway through HES1-dependent SRC/signal transducers and activators of transcription 3 pathway. Mol Cancer Res 7:1663–1671

    Article  PubMed  CAS  Google Scholar 

  32. Ma J, Meng Y, Kwiatkowski DJ, Chen X, Peng H, Sun Q, Zha X, Wang F, Wang Y, Jing Y, Zhang S, Chen R, Wang L, Wu E, Cai G, Malinowska-Kolodziej I, Liao Q, Liu Y, Zhao Y, Xu K, Dai J, Han J, Wu L, Zhao RC, Shen H, Zhang H (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 120:103–114

    Google Scholar 

  33. Lee H, Deng J, Xin H, Liu Y, Pardoll D, Yu H (2011) A requirement of STAT3 DNA binding precludes Th-1 immunostimulatory gene expression by NF-kappaB in tumors. Cancer Res 71:3772–3780

    Google Scholar 

  34. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283–293

    Article  PubMed  CAS  Google Scholar 

  35. Lee H, Pal SK, Reckamp K, Figlin RA, Yu H (2011) STAT3: a target to enhance antitumor immune response. Curr Top Microbiol Immunol 344:41–59

    Google Scholar 

  36. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  37. Regis G, Pensa S, Boselli D, Novelli F, Poli V (2008) Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin Cell Dev Biol 19:351–359

    Article  PubMed  CAS  Google Scholar 

  38. Pinho AV, Rooman I, Reichert M, De Medts N, Bouwens L, Rustgi AK, Real FX (2011) Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 60:958–966

    Article  PubMed  CAS  Google Scholar 

  39. Lleonart ME, Artero-Castro A, Kondoh H (2009) Senescence induction; a possible cancer therapy. Mol Cancer 8:3

    Article  PubMed  Google Scholar 

  40. Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    PubMed  CAS  Google Scholar 

  41. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775:5–20

    PubMed  CAS  Google Scholar 

  42. Kahlem P, Dorken B, Schmitt CA (2004) Cellular senescence in cancer treatment: friend or foe? J Clin Invest 113:169–174

    PubMed  CAS  Google Scholar 

  43. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  PubMed  CAS  Google Scholar 

  44. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  45. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, Fan AC, Yang Q, Braunstein L, Crosby E, Ryeom S, Felsher DW (2010) CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18:485–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Province of Guangdong Science Grant (10251051501000008).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcheng Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S., Xie, J., Miao, J. et al. A knockdown of Maml1 that results in melanoma cell senescence promotes an innate and adaptive immune response. Cancer Immunol Immunother 62, 183–190 (2013). https://doi.org/10.1007/s00262-012-1318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1318-1

Keywords

Navigation