Skip to main content

Advertisement

Log in

T cells from indolent CLL patients prevent apoptosis of leukemic B cells in vitro and have altered gene expression profile

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

T cells may have a role in sustaining the leukemic clone in chronic lymphocytic leukemia (CLL). In this study, we have examined the ability of T cells from CLL patients to support the survival of the leukemic B cells in vitro. Additionally, we compared global gene expression of T cells from indolent CLL patients with healthy individuals and multiple myeloma (MM) patients. Apoptosis of purified leukemic B cells was inhibited in vitro when co-cultured with increasing numbers of autologous T cells (p < 0.01) but not autologous B and T cells of normal donors. The anti-apoptotic effect exceeded that of the anti-apoptotic cytokine IL-4 (p = 0.002) and was greater with CD8+ cells (p = 0.02) than with CD4+ cells (p = 0.05). The effect was depended mainly on cell–cell contact although a significant effect was also observed in transwell experiments (p = 0.05). About 356 genes involved in different cellular pathways were deregulated in T cells of CLL patients compared to healthy individuals and MM patients. The results of gene expression profiling were verified for 6 genes (CCL4, CCL5 (RANTES), XCL1, XCL2, KLF6, and TRAF1) using qRT–PCR and immunoblotting. Our results demonstrate that CLL-derived T cells can prevent apoptosis of leukemic B cells and have altered expression of genes that may facilitate the survival of the leukemic clone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bo MD, Bomben R, Zucchetto A et al (2012) Microenvironmental interactions in chronic lymphocytic leukemia: hints for pathogenesis and identification of targets for rational therapy. Curr Pharm Des. pii:CPD-EPUB-20120510-1

  2. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352(8):804–815

    Article  PubMed  CAS  Google Scholar 

  3. Ghia P, Caligaris-Cappio F (2006) The origin of B-cell chronic lymphocytic leukemia. Semin Oncol 33(2):150–156

    Article  PubMed  CAS  Google Scholar 

  4. Kiaii S, Choudhury A, Mozaffari F et al (2005) Signaling molecules and cytokine production in T cells of patients with B-cell chronic lymphocytic leukemia (B-CLL): comparison of indolent and progressive disease. Med Oncol 22(3):291–302

    Article  PubMed  CAS  Google Scholar 

  5. Mellstedt H, Choudhury A (2006) T and B cells in B-chronic lymphocytic leukaemia: faust, mephistopheles and the pact with the devil. Cancer Immunol Immunother 55(2):210–220

    Article  PubMed  CAS  Google Scholar 

  6. Mellstedt H, Pettersson D (1974) Lymphocyte subpopulations in chronic lymphocytic leukemia. Characterization by cell surface markers, cytotoxic activity, and mitogenic stimulation. Scand J Immunol 3(3):303–310

    Article  PubMed  CAS  Google Scholar 

  7. Scrivener S, Goddard RV, Kaminski ER et al (2003) Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma 44(3):383–389

    Article  PubMed  CAS  Google Scholar 

  8. Kiaii S, Choudhury A, Mozaffari F et al (2006) Signaling molecules and cytokine production in T cells of patients with B-cell chronic lymphocytic leukemia: long-term effects of fludarabine and alemtuzumab treatment. Leuk Lymphoma 47(7):1229–1238. doi:10.1080/10428190600565503

    Article  PubMed  CAS  Google Scholar 

  9. Palma M, Kokhaei P, Lundin J et al (2006) The biology and treatment of chronic lymphocytic leukemia. Ann Oncol 17(Suppl 10):x144–x154

    Article  PubMed  Google Scholar 

  10. Rossmann ED, Lewin N, Jeddi-Tehrani M et al (2002) Intracellular T cell cytokines in patients with B cell chronic lymphocytic leukaemia (B-CLL). Eur J Haematol 68(5):299–306

    Article  PubMed  CAS  Google Scholar 

  11. Ghia P, Caligaris-Cappio F (2000) The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res 79:157–173

    Article  PubMed  CAS  Google Scholar 

  12. Ghia P, Circosta P, Scielzo C et al (2005) Differential effects on CLL cell survival exerted by different microenvironmental elements. Curr Top Microbiol Immunol 294:135–145

    Article  PubMed  CAS  Google Scholar 

  13. Ghia P, Strola G, Granziero L et al (2002) Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 32(5):1403–1413

    Article  PubMed  CAS  Google Scholar 

  14. Granziero L, Circosta P, Scielzo C et al (2003) CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood 101(5):1962–1969

    Article  PubMed  CAS  Google Scholar 

  15. Cheson BD, Bennett JM, Grever M et al (1996) National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 87(12):4990–4997

    PubMed  CAS  Google Scholar 

  16. Boyum A (1977) Separation of lymphocytes, lymphocyte subgroups and monocytes: a review. Lymphology 10(2):71–76

    PubMed  CAS  Google Scholar 

  17. Ni H, Ergin M, Tibudan SS et al (2003) Protein kinase C-delta is commonly expressed in multiple myeloma cells and its downregulation by rottlerin causes apoptosis. Br J Haematol 121(6):849–856

    Article  PubMed  CAS  Google Scholar 

  18. Kokhaei P, Palma M, Hansson L et al (2007) Telomerase (hTERT 611–626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp Hematol 35(2):297–304. doi:10.1016/j.exphem.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  19. Plander M, Seegers S, Ugocsai P et al (2009) Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles. Leukemia 23(11):2118–2128. doi:10.1038/leu.2009.145

    Article  PubMed  CAS  Google Scholar 

  20. Plander M, Ugocsai P, Seegers S et al (2011) Chronic lymphocytic leukemia cells induce anti-apoptotic effects of bone marrow stroma. Ann Hematol 90(12):1381–1390. doi:10.1007/s00277-011-1218-z

    Article  PubMed  Google Scholar 

  21. Gorgun G, Holderried TA, Zahrieh D et al (2005) Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest 115(7):1797–1805

    Article  PubMed  Google Scholar 

  22. Nishio M, Endo T, Tsukada N et al (2005) Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 106(3):1012–1020

    Article  PubMed  CAS  Google Scholar 

  23. Kurtova AV, Balakrishnan K, Chen R et al (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114(20):4441–4450. doi:10.1182/blood-2009-07-233718

    Article  PubMed  CAS  Google Scholar 

  24. Mohle R, Failenschmid C, Bautz F et al (1999) Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13(12):1954–1959

    Article  PubMed  CAS  Google Scholar 

  25. Pedersen IM, Kitada S, Leoni LM et al (2002) Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 100(5):1795–1801

    PubMed  CAS  Google Scholar 

  26. Tinhofer I, Weiss L, Gassner F et al (2009) Difference in the relative distribution of CD4+ T-cell subsets in B-CLL with mutated and unmutated immunoglobulin (Ig) VH genes: implication for the course of disease. J Immunother 32(3):302–309. doi:10.1097/CJI.0b013e318197b5e4

    Article  PubMed  CAS  Google Scholar 

  27. Gamberale R, Geffner J, Arrosagaray G et al (2001) Non-malignant leukocytes delay spontaneous B-CLL cell apoptosis. Leukemia 15(12):1860–1867

    Article  PubMed  CAS  Google Scholar 

  28. Lundin J, Kimby E, Bergmann L et al (2001) Interleukin 4 therapy for patients with chronic lymphocytic leukaemia: a phase I/II study. Br J Haematol 112(1):155–160. pii:bjh2525

    Google Scholar 

  29. Machura E, Mazur B, Rusek-Zychma M et al (2010) Cytokine production by peripheral blood CD4+ and CD8+ T cells in atopic childhood asthma. Clin Dev Immunol 2010:606139. doi:10.1155/2010/606139

    Article  PubMed  Google Scholar 

  30. Coscia M, Pantaleoni F, Riganti C et al (2011) IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia 25(5):828–837. doi:10.1038/leu.2011.12

    Article  PubMed  CAS  Google Scholar 

  31. Bagnara D, Kaufman MS, Calissano C et al (2011) A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 117(20):5463–5472. doi:10.1182/blood-2010-12-324210

    Article  PubMed  CAS  Google Scholar 

  32. Colombara M, Antonini V, Riviera AP et al (2005) Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 175(10):7021–7028. pii:175/10/7021

    Google Scholar 

  33. Ek S, Bjorck E, Hogerkorp CM et al (2006) Mantle cell lymphomas acquire increased expression of CCL4, CCL5 and 4–1BB-L implicated in cell survival. Int J Cancer 118(8):2092–2097. doi:10.1002/ijc.21579

    Article  PubMed  CAS  Google Scholar 

  34. Walunas TL, Lenschow DJ, Bakker CY et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413

    Article  PubMed  CAS  Google Scholar 

  35. Guan E, Wang J, Roderiquez G et al (2002) Natural truncation of the chemokine MIP-1 beta/CCL4 affects receptor specificity but not anti-HIV-1 activity. J Biol Chem 277(35):32348–32352. doi:10.1074/jbc.M203077200

    Article  PubMed  CAS  Google Scholar 

  36. Billard C, Kern C, Tang R et al (2003) Flavopiridol downregulates the expression of both the inducible NO synthase and p27(kip1) in malignant cells from B-cell chronic lymphocytic leukemia. Leukemia 17(12):2435–2443

    Article  PubMed  CAS  Google Scholar 

  37. Levesque MC, Misukonis MA, O’Loughlin CW et al (2003) IL-4 and interferon gamma regulate expression of inducible nitric oxide synthase in chronic lymphocytic leukemia cells. Leukemia 17(2):442–450

    Article  PubMed  CAS  Google Scholar 

  38. Zhao H, Dugas N, Mathiot C et al (1998) B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity. Blood 92(3):1031–1043

    PubMed  CAS  Google Scholar 

  39. Nabeshima S, Nomoto M, Matsuzaki G et al (1999) T-cell hyporesponsiveness induced by activated macrophages through nitric oxide production in mice infected with Mycobacterium tuberculosis. Infect Immun 67(7):3221–3226

    PubMed  CAS  Google Scholar 

  40. van der Veen RC (2001) Nitric oxide and T helper cell immunity. Int Immunopharmacol 1(8):1491–1500

    Article  PubMed  Google Scholar 

  41. Zapata JM, Krajewska M, Morse HC III et al (2004) TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proc Natl Acad Sci USA 101(47):16600–16605. doi:10.1073/pnas.0407541101

    Article  PubMed  CAS  Google Scholar 

  42. Huang H, Li F, Cairns CM et al (2001) Neutrophils and B cells express XCR1 receptor and chemotactically respond to lymphotactin. Biochem Biophys Res Commun 281(2):378–382. doi:10.1006/bbrc.2001.4363

    Article  PubMed  CAS  Google Scholar 

  43. Kabouridis PS (2006) Lipid rafts in T cell receptor signalling. Mol Membr Biol 23(1):49–57. doi:10.1080/09687860500453673

    Article  PubMed  CAS  Google Scholar 

  44. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118(Pt 6):1099–1102. doi:10.1242/jcs.01681

    Article  PubMed  CAS  Google Scholar 

  45. Razzaq TM, Ozegbe P, Jury EC et al (2004) Regulation of T-cell receptor signalling by membrane microdomains. Immunology 113(4):413–426

    Article  PubMed  CAS  Google Scholar 

  46. Bromley SK, Burack WR, Johnson KG et al (2001) The immunological synapse. Annu Rev Immunol 19:375–396. pii:19/1/375

    Google Scholar 

  47. Stinchcombe JC, Bossi G, Booth S et al (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15(5):751–761

    Article  PubMed  CAS  Google Scholar 

  48. Waugh SM, Harris JL, Fletterick R et al (2000) The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity. Nat Struct Biol 7(9):762–765. doi:10.1038/78992

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from The Swedish Cancer Society, The Cancer Society in Stockholm, The King Gustav V Jubilee Fund, The Stockholm County Council, The Cancer and Allergy Foundation, Torsten and Ragnar Söderberg Foundations, The Karolinska Institutet Foundations, and the Ministry of Health and Medical Education of Iran. We thank Ms Leila Relander for excellent secretarial help.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Mellstedt.

Additional information

Shahryar Kiaii and Parviz Kokhaei contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiaii, S., Kokhaei, P., Mozaffari, F. et al. T cells from indolent CLL patients prevent apoptosis of leukemic B cells in vitro and have altered gene expression profile. Cancer Immunol Immunother 62, 51–63 (2013). https://doi.org/10.1007/s00262-012-1300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1300-y

Keywords

Navigation