Skip to main content

Advertisement

Log in

Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) generated from monocytes under 20% O2 are now used as therapeutic tools for cancer patients. However, the O2 concentration is between 3 and 0.5% in most tissues. We evaluated these complicated functions of DCs under oxygen tensions mimicking in vivo situations. Immature DCs (imDCs) were generated from monocytes using IL-4 and GM-CSF under normoxia (20% O2; N-imDCs) or hypoxia (1% O2; H-imDCs). Mature DCs (mDCs) were induced with LPS. DCs were further exposed to normoxia (N/N-DCs) or hypoxia (N/H-DCs and H/H-DCs) conditions. Using a 2-D culture system, H-DCs were smaller in size than N-DCs, and H/H-DCs exhibited higher allo-T cell stimulation ability than N/N-DCs and N/H-DCs. On the other hand, motility and phagocytic ability of H/H-DCs were significantly lower than those of N/H-DCs and N/N-DCs. In a 3-D culture system, however, maturation of H/H-imDCs and N/H-imDCs was suppressed compared with N/N-imDCs as a result of their decreased motility and phagocytosis. Interestingly, silencing of HIF- by RNA interference decreased CD83 expression without affecting any antigen presentation abilities except for the ability to stimulate the allo-T cell population. Our data could help our understanding of DCs, especially therapeutic DCs, in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MFI:

Mean fluorescence intensity

VEGF:

Vascular endothelial cell growth factor

HIF-1α:

Hypoxia inducible factor-1α

Treg:

Regulatory T cell

CA9:

Carbonic anhydrase IX

3-D:

Three-dimensional

References

  1. Galy A, Travis M, Cen D, Chen B (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3(4):459–473

    Article  PubMed  CAS  Google Scholar 

  2. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11(6):753–761

    Article  PubMed  CAS  Google Scholar 

  3. Caldwell CC, Kojima H, Lukashev D, Sitkovsky MV et al (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167(11):6140–6149

    PubMed  CAS  Google Scholar 

  4. Hockel S, Schlenger K, Vaupel P, Hockel M (2001) Association between host tissue vascularity and the prognostically relevant tumor vascularity in human cervical cancer. Int J Oncol 19(4):827–832

    PubMed  CAS  Google Scholar 

  5. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    Article  PubMed  CAS  Google Scholar 

  6. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9(1):10–16

    Article  PubMed  CAS  Google Scholar 

  7. Soruri A, Zwirner J (2005) Dendritic cells: limited potential in immunotherapy. Int J Biochem Cell Biol 37(2):241–245

    Article  PubMed  CAS  Google Scholar 

  8. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  9. Thomas R, Chambers M, Boytar R, Andersen J et al (1999) Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy. Melanoma Res 9(5):474–481

    Article  PubMed  CAS  Google Scholar 

  10. Banchereau J, Briere F, Caux C, Palucka K et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  11. Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85(12):1339–1346

    Article  PubMed  CAS  Google Scholar 

  12. Gale DP, Maxwell PH (2009) The role of HIF in immunity. Int J Biochem Cell Biol 42(4):486–494

    Article  PubMed  Google Scholar 

  13. Mancino A, Schioppa T, Larghi P, Sica A et al (2008) Divergent effects of hypoxia on dendritic cell functions. Blood 112(9):3723–3734

    Article  PubMed  CAS  Google Scholar 

  14. Bosco MC, Pierobon D, Blengio F, Varesio L et al (2009) Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mDCs: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 117(9):2625–2639

    Article  Google Scholar 

  15. Bosco MC, Puppo M, Blengio F, Varesio L et al (2008) Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology 213(9–10):733–749

    Article  PubMed  CAS  Google Scholar 

  16. Tasaki A, Yamanaka N, Kubo M, Katano M et al (2004) Three-dimensional two-layer collagen matrix gel culture model for evaluating complex biological functions of monocyte-derived dendritic cells. J Immunol Methods 287(1–2):79–90

    Article  PubMed  CAS  Google Scholar 

  17. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  PubMed  Google Scholar 

  18. Onishi H, Kuroki H, Katano M, Morisaki T et al (2004) Monocyte-derived dendritic cells that capture dead tumor cells secrete IL-12 and TNF-alpha through IL-12/TNF-alpha/NF-kappaB autocrine loop. Cancer Immunol Immunother 53(12):1093–1100

    Article  PubMed  CAS  Google Scholar 

  19. Onishi H, Morisaki T, Kuroki H, Katano M et al (2005) Evaluation of a dysfunctional and short-lived subset of monocyte-derived dendritic cells from cancer patients. Anticancer Res 25(5):3445–3451

    PubMed  CAS  Google Scholar 

  20. Qu X, Yang MX, Kong BH, Lu L et al (2005) Hypoxia inhibits the migratory capacity of human monocyte-derived dendritic cells. Immunol Cell Biol 83(6):668–673

    Article  PubMed  Google Scholar 

  21. Ricciardi A, Elia AR, Cappello P, Varesio L et al (2008) Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression. Mol Cancer Res 6(2):175–185

    Article  PubMed  CAS  Google Scholar 

  22. Zhao W, Darmanin S, Fu Q, Chen J, Kobayashi M et al (2005) Hypoxia suppresses the production of matrix metalloproteinases and the migration of human monocyte-derived dendritic cells. Eur J Immunol 35(12):3468–3477

    Article  PubMed  CAS  Google Scholar 

  23. Zhao P, Li XG, Yang M, Qu X et al (2008) Hypoxia suppresses the production of MMP-9 by human monocyte-derived dendritic cells and requires activation of adenosine receptor A2b via cAMP/PKA signaling pathway. Mol Immunol 45(8):2187–2195

    Article  PubMed  CAS  Google Scholar 

  24. Du R, Lu KV, Petritsch C, Bergers G et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220

    Article  PubMed  CAS  Google Scholar 

  25. Faveeuw C, Preece G, Ager A (2001) Transendothelial migration of lymphocytes across high endothelial venules into lymph nodes is affected by metalloproteinases. Blood 98(3):688–695

    Article  PubMed  CAS  Google Scholar 

  26. Elia AR, Cappello P, Puppo M, Giovarelli M et al (2008) Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol 84(6):1472–1482

    Article  PubMed  CAS  Google Scholar 

  27. Nam EH, Park SR, Kim PH (2010) TGF-beta1 induces mouse dendritic cells to express VEGF and its receptor (Flt-1) under hypoxic conditions. Exp Mol Med 42(9):606–613

    Article  PubMed  CAS  Google Scholar 

  28. Riboldi E, Musso T, Moroni E, Sozzani S et al (2005) Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol 175(5):2788–2792

    PubMed  CAS  Google Scholar 

  29. Gabrilovich DI, Chen HL, Girgis KR, Carbone DP et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  PubMed  CAS  Google Scholar 

  30. Gabrilovich D, Ishida T, Oyama T, Carbone DP et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166

    PubMed  CAS  Google Scholar 

  31. Alfaro C, Suarez N, Gonzalez A, Perez-Gracia JL et al (2009) Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br J Cancer 100(7):1111–1119

    Article  PubMed  CAS  Google Scholar 

  32. Hirano N, Butler MO, Xia Z, Nadler LM et al (2006) Engagement of CD83 ligand induces prolonged expansion of CD8 + T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536

    Article  PubMed  CAS  Google Scholar 

  33. Aerts-Toegaert C, Heirman C, Tuyaerts S, Breckpot K et al (2007) CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol 37(3):686–695

    Article  PubMed  CAS  Google Scholar 

  34. Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154(8):3821–3835

    PubMed  CAS  Google Scholar 

  35. Prechtel AT, Turza NM, Theodoridis AA, Steinkasserer A (2007) CD83 knockdown in monocyte-derived dendritic cells by small interfering RNA leads to a diminished T cell stimulation. J Immunol 178(9):5454–5464

    PubMed  CAS  Google Scholar 

  36. Kuga H, Morisaki T, Nakamura K, Katano M et al (2003) Interferon-gamma suppresses transforming growth factor-beta-induced invasion of gastric carcinoma cells through cross-talk of Smad pathway in a three-dimensional culture model. Oncogene 22(49):7838–7847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kaori Nomiyama for her skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Katano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogino, T., Onishi, H., Suzuki, H. et al. Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother 61, 409–424 (2012). https://doi.org/10.1007/s00262-011-1112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1112-5

Keywords

Navigation