Skip to main content

Advertisement

Log in

Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapy is currently under active investigation as an adjuvant therapy to improve the overall survival of patients with acute myeloid leukaemia (AML) by eliminating residual leukaemic cells following standard therapy. The graft-versus-leukaemia effect observed following allogeneic haematopoietic stem cell transplantation has already demonstrated the significant role of immune cells in controlling AML, paving the way to further exploitation of this effect in optimized immunotherapy protocols. In this review, we discuss the current state of cellular immunotherapy as adjuvant therapy for AML, with a particular focus on new strategies and recently published results of preclinical and clinical studies. Therapeutic vaccines that are being tested in AML include whole tumour cells as an autologous source of multiple leukaemia-associated antigens (LAA) and autologous dendritic cells loaded with LAA as effective antigen-presenting cells. Furthermore, adoptive transfer of cytotoxic T cells or natural killer cells is under active investigation. Results from phase I and II trials are promising and support further investigation into the potential of cellular immunotherapeutic strategies to prevent or fight relapse in AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukaemia

CR:

Complete remission

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

DLI:

Donor leucocyte infusion

FAB:

French-American-British

GVHD:

Graft-versus-host-disease

GVL:

Graft-versus-leukaemia

HLA:

Human leucocyte antigen

HSCT:

Haematopoietic stem cell transplantation

LAA:

Leukaemia-associated antigen

LSA:

Leukaemia-specific antigen

mHAg:

Minor histocompatibility antigen

MHC:

Major histocompatibility complex

MRD:

Minimal residual disease

NK:

Natural killer

poly(I:C):

Polyinosinic polycytidylic acid

PR3:

Proteinase 3

RHAMM:

Receptor for hyaluronic acid-mediated motility

SSX2IP:

Synovial sarcoma X breakpoint 2-interacting protein

TAA:

Tumour-associated antigen

TLR:

Toll-like receptor

WHO:

World Health Organization

WT1:

Wilms’ tumour protein

References

  1. Rubnitz JE, Gibson B, Smith FO (2010) Acute myeloid leukemia. Hematol Oncol Clin North Am 24:35–63

    Article  PubMed  Google Scholar 

  2. Stone RM, O’Donnell MR, Sekeres MA (2004) Acute myeloid leukemia. Hematol Am Soc Hematol Educ Program 98–117

  3. O’Donnell MR, Abboud CN, Altman J et al (2010) Acute myeloid leukemia. J Natl Compr Canc Netw 9:280–317

    Google Scholar 

  4. Hamadani M, Awan FT, Elder P et al (2008) Allogeneic hematopoietic stem cell transplantation for peripheral T cell lymphomas; evidence of graft-versus-T cell lymphoma effect. Biol Blood Marrow Transplant 14:480–483

    Article  PubMed  Google Scholar 

  5. Soiffer RJ (2008) Donor lymphocyte infusions for acute myeloid leukaemia. Best Pract Res Clin Haematol 21:455–466

    Article  PubMed  CAS  Google Scholar 

  6. Hamadani M, Awan FT, Copelan EA (2008) Hematopoietic stem cell transplantation in adults with acute myeloid leukemia. Biol Blood Marrow Transplant 14:556–567

    Article  PubMed  CAS  Google Scholar 

  7. Lodewyck T, Cornelissen JJ (2008) Allogeneic stem cell transplantation in acute myeloid leukemia: a risk-adapted approach. Blood Rev 22:293–302

    Article  PubMed  Google Scholar 

  8. Storb R (2009) Reduced-intensity conditioning transplantation in myeloid malignancies. Curr Opin Oncol 21:S3–S5

    Article  PubMed  Google Scholar 

  9. Marmont AM, Horowitz MM, Gale RP et al (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130

    PubMed  CAS  Google Scholar 

  10. O’Donnell PV, Luznik L, Jones RJ et al (2002) Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 8:377–386

    Article  PubMed  Google Scholar 

  11. Luznik L, Bolanos-Meade J, Zahurak M et al (2010) High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 115:3224–3230

    Article  PubMed  CAS  Google Scholar 

  12. Luznik L, O’Donnell PV, Symons HJ et al (2008) HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 14:641–650

    Article  PubMed  CAS  Google Scholar 

  13. Rezvani K, Barrett AJ (2008) Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 21:437–453

    Article  PubMed  CAS  Google Scholar 

  14. Smits EL, Berneman ZN, Van Tendeloo VF (2009) Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 14:240–252

    Article  PubMed  CAS  Google Scholar 

  15. Schmitt M, Casalegno-Garduno R, Xu X et al (2009) Peptide vaccines for patients with acute myeloid leukemia. Expert Rev Vaccines 8:1415–1425

    Article  PubMed  CAS  Google Scholar 

  16. Barrett AJ, Le Blanc K (2010) Immunotherapy prospects for acute myeloid leukaemia. Clin Exp Immunol 161:223–232

    PubMed  CAS  Google Scholar 

  17. Liseth K, Ersvaer E, Hervig T et al (2010) Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010:692097

    Article  PubMed  CAS  Google Scholar 

  18. Thoren FB, Romero AI, Brune M et al (2009) Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation immunotherapy in acute myeloid leukemia. Expert Opin Biol Ther 9:1217–1223

    Article  PubMed  CAS  Google Scholar 

  19. Pegram HJ, Andrews DM, Smyth MJ et al (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224

    Article  PubMed  Google Scholar 

  20. Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  21. Chan L, Hardwick NR, Guinn BA et al (2006) An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 55:1017–1024

    Article  PubMed  CAS  Google Scholar 

  22. Bruserud O, Ulvestad E, Berentsen S et al (1998) T-lymphocyte functions in acute leukaemia patients with severe chemotherapy-induced cytopenia: characterization of clonogenic T-cell proliferation. Scand J Immunol 47:54–62

    Article  PubMed  CAS  Google Scholar 

  23. Behl D, Porrata LF, Markovic SN et al (2006) Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 20:29–34

    Article  PubMed  CAS  Google Scholar 

  24. Barrett AJ, Savani BN (2009) Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia 23:53–58

    Article  PubMed  CAS  Google Scholar 

  25. Scheibenbogen C, Letsch A, Thiel E et al (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137

    Article  PubMed  CAS  Google Scholar 

  26. Greiner J, Li L, Ringhoffer M, Barth TF et al (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945

    Article  PubMed  CAS  Google Scholar 

  27. Rezvani K, Brenchley JM, Price DA et al (2005) T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 11:8799–8807

    Article  PubMed  CAS  Google Scholar 

  28. Oka Y, Elisseeva OA, Tsuboi A et al (2000) Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51:99–107

    Article  PubMed  CAS  Google Scholar 

  29. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293

    PubMed  CAS  Google Scholar 

  30. Rezvani K (2008) PR1 vaccination in myeloid malignancies. Expert Rev Vaccines 7:867–875

    Article  PubMed  CAS  Google Scholar 

  31. Greiner J, Schmitt M, Li L et al (2006) Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 108:4109–4117

    Article  PubMed  CAS  Google Scholar 

  32. Greiner J, Dohner H, Schmitt M (2006) Cancer vaccines for patients with acute myeloid leukemia–definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica 91:1653–1661

    PubMed  CAS  Google Scholar 

  33. Guinn BA, Tobal K, Mills KI (2007) Comparison of the survival implications of tumour-associated versus cancer-testis antigen expression in acute myeloid leukaemia. Br J Haematol 136:510–512

    Article  PubMed  CAS  Google Scholar 

  34. Guinn BA, Mohamedali A, Mills KI et al (2007) Leukemia associated antigens: their dual role as biomarkers and immunotherapeutic targets for acute myeloid leukemia. Biomark Insights 2:69–79

    PubMed  Google Scholar 

  35. Greiner J, Bullinger L, Guinn BA et al (2008) Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 14:7161–7166

    Article  PubMed  CAS  Google Scholar 

  36. Greiner J, Schmitt M (2008) Leukemia-associated antigens as target structures for a specific immunotherapy in chronic myeloid leukemia. Eur J Haematol 80:461–468

    Article  PubMed  Google Scholar 

  37. Guinn BA, Bullinger L, Thomas NS et al (2008) SSX2IP expression in acute myeloid leukaemia: an association with mitotic spindle failure in t(8;21), and cell cycle in t(15;17) patients. Br J Haematol 140:250–251

    PubMed  Google Scholar 

  38. Yee C, Thompson JA, Roche P et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 192:1637–1644

    Article  PubMed  CAS  Google Scholar 

  39. Oka Y, Tsuboi A, Taguchi T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890

    Article  PubMed  CAS  Google Scholar 

  40. Oka Y, Sugiyama H (2010) WT1 peptide vaccine, one of the most promising cancer vaccines: its present status and the future prospects. Immunotherapy 2:591–594

    Article  PubMed  CAS  Google Scholar 

  41. Bruserud O, Ulvestad E (2000) Acute myelogenous leukemia blasts as accessory cells during in vitro T lymphocyte activation. Cell Immunol 206:36–50

    Article  PubMed  CAS  Google Scholar 

  42. Bruserud O (1999) Acute myelogenous leukemia blasts as accessory cells during T lymphocyte activation: possible implications for future therapeutic strategies. Leukemia 13:1175–1187

    Article  PubMed  CAS  Google Scholar 

  43. Olsnes AM, Motorin D, Ryningen A et al (2006) T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol Immunother 55:830–840

    Article  PubMed  CAS  Google Scholar 

  44. Bruserud O, Ryningen A, Olsnes AM et al (2007) Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 92:332–341

    Article  PubMed  CAS  Google Scholar 

  45. Bruserud O, Frostad S, Foss B (1999) In vitro culture of acute myelogenous leukemia blasts: a comparison of four different culture media. J Hematother 8:63–73

    Article  PubMed  CAS  Google Scholar 

  46. Bruserud O, Gjertsen BT, von Volkman HL (2000) In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 9:923–932

    Article  PubMed  CAS  Google Scholar 

  47. Bruserud O, Ulvestad E (1999) Effects of gamma-irradiation on acute myelogenous leukemia blasts: in vitro studies of proliferation, constitutive cytokine secretion, and accessory cell function during T cell activation. J Hematother Stem Cell Res 8:431–441

    Article  PubMed  CAS  Google Scholar 

  48. Powles RL, Balchin LA, Fairley GH et al (1971) Recognition of leukaemia cells as foreign before and after autoimmunization. Br Med J 1:486–489

    Article  PubMed  CAS  Google Scholar 

  49. Powles RL, Russell J, Lister TA et al (1977) Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient. Br J Cancer 35:265–272

    Article  PubMed  CAS  Google Scholar 

  50. Zhang WG, Liu SH, Cao XM et al (2005) A phase-I clinical trial of active immunotherapy for acute leukemia using inactivated autologous leukemia cells mixed with IL-2, GM-CSF, and IL-6. Leuk Res 29:3–9

    Article  PubMed  CAS  Google Scholar 

  51. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN (2001) Gene-based cancer vaccines: an ex vivo approach. Leukemia 15:545–558

    Article  PubMed  CAS  Google Scholar 

  52. Cignetti A, Guarini A, Carbone A et al (1994) Transduction of the IL2 gene into human acute leukemia cells: induction of tumor rejection without modifying cell proliferation and IL2 receptor expression. J Natl Cancer Inst 86:785–791

    Article  PubMed  CAS  Google Scholar 

  53. Matulonis U, Dosiou C, Freeman G et al (1996) B7–1 is superior to B7–2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7–1 and B7–2 are functionally distinct. J Immunol 156:1126–1131

    PubMed  CAS  Google Scholar 

  54. Nakazaki Y, Tani K, Lin ZT et al (1998) Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Ther 5:1355–1362

    Article  PubMed  CAS  Google Scholar 

  55. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ et al (1998) Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 91:222–230

    PubMed  CAS  Google Scholar 

  56. Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW et al (1996) Irradiated B7–1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood 87:2938–2946

    PubMed  CAS  Google Scholar 

  57. Mutis T, Schrama E, Melief CJ et al (1998) CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens. Blood 92:1677–1684

    PubMed  CAS  Google Scholar 

  58. Schakowski F, Buttgereit P, Mazur M et al (2004) Novel non-viral method for transfection of primary leukemia cells and cell lines. Genet Vaccines Ther 2:1

    Article  PubMed  Google Scholar 

  59. Hirst WJ, Buggins A, Darling D et al (1997) Enhanced immune costimulatory activity of primary acute myeloid leukaemia blasts after retrovirus-mediated gene transfer of B7.1. Gene Ther 4:691–699

    Article  PubMed  CAS  Google Scholar 

  60. Roddie PH, Paterson T, Turner ML (2000) Gene transfer to primary acute myeloid leukaemia blasts and myeloid leukaemia cell lines. Cytokines Cell Mol Ther 6:127–134

    PubMed  CAS  Google Scholar 

  61. Wattel E, Vanrumbeke M, Abina MA et al (1996) Differential efficacy of adenoviral mediated gene transfer into cells from hematological cell lines and fresh hematological malignancies. Leukemia 10:171–174

    PubMed  CAS  Google Scholar 

  62. Howard DS, Rizzierri DA, Grimes B et al (1999) Genetic manipulation of primitive leukemic and normal hematopoietic cells using a novel method of adenovirus-mediated gene transfer. Leukemia 13:1608–1616

    Article  PubMed  CAS  Google Scholar 

  63. Saudemont A, Corm S, Wickham T et al (2005) Induction of leukemia-specific CD8+ cytotoxic T cells with autologous myeloid leukemic cells maturated with a fiber-modified adenovirus encoding TNF-alpha. Mol Ther 11:950–959

    Article  PubMed  CAS  Google Scholar 

  64. Dilloo D, Rill D, Entwistle C et al (1997) A novel herpes vector for the high-efficiency transduction of normal and malignant human hematopoietic cells. Blood 89:119–127

    PubMed  CAS  Google Scholar 

  65. Anderson R, Macdonald I, Corbett T et al (1997) Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Hum Gene Ther 8:1125–1135

    Article  PubMed  CAS  Google Scholar 

  66. Gonzalez R, Vereecque R, Wickham TJ et al (1999) Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Ther 6:314–320

    Article  PubMed  CAS  Google Scholar 

  67. Stripecke R, Cardoso AA, Pepper KA et al (2000) Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage- colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood 96:1317–1326

    PubMed  CAS  Google Scholar 

  68. Biagi E, Bambacioni F, Gaipa G et al (2001) Efficient lentiviral transduction of primary human acute myelogenous and lymphoblastic leukemia cells. Haematologica 86:13–16

    PubMed  CAS  Google Scholar 

  69. Koya RC, Kasahara N, Pullarkat V et al (2002) Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16:1645–1654

    Article  PubMed  CAS  Google Scholar 

  70. Heinzinger NK, Bukinsky MI, Haggerty SA et al (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315

    Article  PubMed  CAS  Google Scholar 

  71. Koya RC, Weber JS, Kasahara N et al (2004) Making dendritic cells from the inside out: lentiviral vector-mediated gene delivery of granulocyte-macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro. Hum Gene Ther 15:733–748

    Article  PubMed  CAS  Google Scholar 

  72. Gaken J, Jiang J, Daniel K et al (2000) Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 7:1979–1985

    Article  PubMed  CAS  Google Scholar 

  73. Chan L, Hardwick N, Darling D et al (2005) IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther 11:120–131

    Article  PubMed  CAS  Google Scholar 

  74. Ingram W, Chan L, Guven H et al (2009) Human CD80/IL2 lentivirus-transduced acute myeloid leukaemia (AML) cells promote natural killer (NK) cell activation and cytolytic activity: implications for a phase I clinical study. Br J Haematol 145:749–760

    Article  PubMed  CAS  Google Scholar 

  75. Hardwick N, Chan L, Ingram W et al (2010) Lytic activity against primary AML cells is stimulated in vitro by an autologous whole cell vaccine expressing IL-2 and CD80. Cancer Immunol Immunother 59:379–388

    Article  PubMed  CAS  Google Scholar 

  76. Borrello IM, Levitsky HI, Stock W et al (2009) Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 114:1736–1745

    Article  PubMed  CAS  Google Scholar 

  77. Koos D, Josephs SF, Alexandrescu DT et al (2010) Tumor vaccines in 2010: need for integration. Cell Immunol 263:138–147

    Article  PubMed  CAS  Google Scholar 

  78. Smits EL, Ponsaerts P, Van de Velde AL et al (2007) Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia 21:1691–1699

    Article  PubMed  CAS  Google Scholar 

  79. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  80. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  PubMed  CAS  Google Scholar 

  81. Ferrantini M, Capone I, Belardelli F (2007) Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89:884–893

    Article  PubMed  CAS  Google Scholar 

  82. Lion E, Smits EL, Berneman ZN et al (2009) Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-gamma secretion by human NK cells. Leuk Res 33:539–546

    Article  PubMed  CAS  Google Scholar 

  83. Lion E, Smits EL, Berneman ZN et al (2009) Quantification of IFN-gamma produced by human purified NK cells following tumor cell stimulation: comparison of three IFN-gamma assays. J Immunol Methods 350:89–96

    Article  PubMed  CAS  Google Scholar 

  84. Smits EL, Cools N, Lion E et al (2010) The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunol Immunother 59:35–46

    Article  PubMed  CAS  Google Scholar 

  85. Olsnes AM, Hatfield KJ, Bruserud O (2009) The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J BUON 14:S131–S140

    PubMed  Google Scholar 

  86. Olsnes AM, Ryningen A, Ersvaer E et al (2008) In vitro induction of a dendritic cell phenotype in primary human acute myelogenous leukemia (AML) blasts alters the chemokine release profile and increases the levels of T cell chemotactic CCL17 and CCL22. J Interferon Cytokine Res 28:297–310

    Article  PubMed  CAS  Google Scholar 

  87. Le Dieu R, Taussig DC, Ramsay AG et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114(18):3909–3916

    Article  PubMed  CAS  Google Scholar 

  88. Szczepanski MJ, Szajnik M, Czystowska M et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15(10):3325–3332

    Article  PubMed  CAS  Google Scholar 

  89. Cools N, Ponsaerts P, Van Tendeloo VF et al (2007) Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol 82:1365–1374

    Article  PubMed  CAS  Google Scholar 

  90. Robson NC, Hoves S, Maraskovsky E et al (2010) Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol 22:137–144

    Article  PubMed  CAS  Google Scholar 

  91. Smits EL, Anguille S, Cools N et al (2009) Dendritic cell-based cancer gene therapy. Hum Gene Ther 20:1106–1118

    Article  PubMed  CAS  Google Scholar 

  92. Romani N, Gruner S, Brang D et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93

    Article  PubMed  CAS  Google Scholar 

  93. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  94. Anguille S, Smits EL, Cools N et al (2009) Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 7:109

    Article  PubMed  CAS  Google Scholar 

  95. Brouwer RE, van der Hoorn M, Kluin-Nelemans HC et al (2000) The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum Immunol 61:565–574

    Article  PubMed  CAS  Google Scholar 

  96. Li L, Reinhardt P, Schmitt A et al (2005) Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 54:685–693

    Article  PubMed  CAS  Google Scholar 

  97. Hicks C, Cheung C, Lindeman R (2003) Restimulation of tumour-specific immunity in a patient with AML following injection with B7-1 positive autologous blasts. Leuk Res 27:1051–1061

    Article  PubMed  CAS  Google Scholar 

  98. Houtenbos I, Westers TM, Ossenkoppele GJ et al (2006) Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology 211:677–685

    Article  PubMed  CAS  Google Scholar 

  99. Li L, Giannopoulos K, Reinhardt P et al (2006) Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol 28:855–861

    PubMed  CAS  Google Scholar 

  100. Roddie H, Klammer M, Thomas C et al (2006) Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol 133:152–157

    Article  PubMed  CAS  Google Scholar 

  101. Houtenbos I, Westers TM, Ossenkoppele GJ et al (2006) Leukaemic dendritic cell vaccination for patients with acute myeloid leukaemia. Br J Haematol 134:445–446

    Article  PubMed  CAS  Google Scholar 

  102. Kremser A, Dressig J, Grabrucker C et al (2010) Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother 33:185–199

    Article  PubMed  Google Scholar 

  103. Grabrucker C, Liepert A, Dreyig J et al (2010) The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. J Immunother 33:523–537

    Article  PubMed  CAS  Google Scholar 

  104. Liepert A, Grabrucker C, Kremser A (2010) Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Cell Immunol 265:23–30

    Article  PubMed  CAS  Google Scholar 

  105. Osman Y, Takahashi M, Zheng Z et al (1999) Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res 18:485–492

    PubMed  CAS  Google Scholar 

  106. Zeis M, Siegel S, Wagner A et al (2003) Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170:5391–5397

    PubMed  CAS  Google Scholar 

  107. Van Tendeloo VF, Van de Velde A, Van Driessche A et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 107:13824–13829

    Article  PubMed  Google Scholar 

  108. Fujii S, Fujimoto K, Shimizu K et al (1999) Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients. Cancer Res 59:2150–2158

    PubMed  CAS  Google Scholar 

  109. Galea-Lauri J, Darling D, Mufti G et al (2002) Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother 51:299–310

    Article  PubMed  CAS  Google Scholar 

  110. Spisek R, Chevallier P, Morineau N et al (2002) Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res 62:2861–2868

    PubMed  CAS  Google Scholar 

  111. Banat GA, Usluoglu N, Hoeck M et al (2004) Dendritic cells fused with core binding factor-beta positive acute myeloid leukaemia blast cells induce activation of cytotoxic lymphocytes. Br J Haematol 126:593–601

    Article  PubMed  Google Scholar 

  112. Lee JJ, Kook H, Park MS et al (2004) Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher 19:66–70

    Article  PubMed  Google Scholar 

  113. Klammer M, Waterfall M, Samuel K et al (2005) Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia. Br J Haematol 129:340–349

    Article  PubMed  CAS  Google Scholar 

  114. Lee JJ, Park MS, Park JS et al (2006) Induction of leukemic-cell-specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens. J Clin Apher 21:188–194

    Article  PubMed  CAS  Google Scholar 

  115. Van Driessche A, Van de Velde AL, Nijs G et al (2009) Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 11:653–668

    Article  PubMed  CAS  Google Scholar 

  116. Cavdar AO, Babacan E, Gozdasoglu S et al (1993) T-lymphocyte sub-populations in orbito-ocular granulocytic sarcoma (OOGS) and acute myelocytic leukemia (AML): a preliminary study. Med Oncol Tumor Pharmacother 10:113–115

    PubMed  CAS  Google Scholar 

  117. Bruserud O (2000) Effects of imipenem and cilastatin on human T-lymphocytes derived from acute leukemia patients with chemotherapy-induced leucopenia: studies of T-lymphocyte responses in the presence of acute myelogenous leukemia (AML) blast accessory cells. Int J Immunopharmacol 22:69–81

    Article  PubMed  CAS  Google Scholar 

  118. Costello RT, Sivori S, Marcenaro E et al (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667

    Article  PubMed  CAS  Google Scholar 

  119. Fauriat C, Moretta A, Olive D et al (2005) Defective killing of dendritic cells by autologous natural killer cells from acute myeloid leukemia patients. Blood 106:2186–2188

    Article  PubMed  CAS  Google Scholar 

  120. Nowbakht P, Ionescu MC, Rohner A et al (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105:3615–3622

    Article  PubMed  CAS  Google Scholar 

  121. Fauriat C, Just-Landi S, Mallet F et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330

    Article  PubMed  CAS  Google Scholar 

  122. Molldrem JJ (2006) Vaccination for leukemia. Biol Blood Marrow Transplant 12:13–18

    Article  PubMed  Google Scholar 

  123. Heslop HE, Stevenson FK, Molldrem JJ (2003) Immunotherapy of hematologic malignancy. Hematology Am Soc Hematol Educ Program 331–349

  124. Schmid C, Labopin M, Nagler A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25:4938–4945

    Google Scholar 

  125. Yegin ZA, Ozkurt ZN, Aki SZ et al (2010) Donor lymphocyte infusion for leukemia relapse after hematopoietic stem cell transplantation. Transfus Apher Sci 42:239–245

    Article  PubMed  Google Scholar 

  126. Gesundheit B, Shapira MY, Resnick IB et al (2009) Successful cell-mediated cytokine-activated immunotherapy for relapsed acute myeloid leukemia after hematopoietic stem cell transplantation. Am J Hematol 84:188–190

    Article  PubMed  Google Scholar 

  127. Gribben JG, Guinan EC, Boussiotis VA et al (1996) Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool. Blood 87:4887–4893

    PubMed  CAS  Google Scholar 

  128. Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438

    Article  PubMed  CAS  Google Scholar 

  129. Blazar BR, Taylor PA, Panoskaltsis-Mortari A et al (1997) Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 158:29–39

    PubMed  CAS  Google Scholar 

  130. Guinan EC, Boussiotis VA, Neuberg D et al (1999) Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 340:1704–1714

    Article  PubMed  CAS  Google Scholar 

  131. Cavazzana-Calvo M, Fromont C, Le Deist F et al (1990) Specific elimination of alloreactive T cells by an anti-interleukin-2 receptor B chain-specific immunotoxin. Transplantation 50:1–7

    Article  PubMed  CAS  Google Scholar 

  132. Valteau-Couanet D, Cavazzana-Calvo M, Le Deist F et al (1993) Functional study of residual T lymphocytes after specific elimination of alloreactive T cells by a specific anti-interleukin-2 receptor Bk chain immunotoxin. Transplantation 56:1574–1576

    PubMed  CAS  Google Scholar 

  133. Harris DT, Sakiestewa D, Lyons C et al (1999) Prevention of graft-versus-host disease (GVHD) by elimination of recipient-reactive donor T cells with recombinant toxins that target the interleukin 2 (IL-2) receptor. Bone Marrow Transplant 23:137–144

    Article  PubMed  CAS  Google Scholar 

  134. Montagna D, Yvon E, Calcaterra V et al (1999) Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 93:3550–3557

    PubMed  CAS  Google Scholar 

  135. van Dijk AM, Kessler FL, Stadhouders-Keet SA et al (1999) Selective depletion of major and minor histocompatibility antigen reactive T cells: towards prevention of acute graft-versus-host disease. Br J Haematol 107:169–175

    Article  PubMed  Google Scholar 

  136. Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S et al (2002) Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 360:130–137

    Article  PubMed  Google Scholar 

  137. Koh MB, Prentice HG, Corbo M et al (2002) Alloantigen-specific T-cell depletion in a major histocompatibility complex fully mismatched murine model provides effective graft-versus-host disease prophylaxis in the presence of lymphoid engraftment. Br J Haematol 118:108–116

    Article  PubMed  CAS  Google Scholar 

  138. Solomon SR, Mielke S, Savani BN et al (2005) Selective depletion of alloreactive donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 106:1123–1129

    Article  PubMed  CAS  Google Scholar 

  139. Wehler TC, Nonn M, Brandt B et al (2007) Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines. Blood 109:365–373

    Article  PubMed  CAS  Google Scholar 

  140. Ge X, Brown J, Sykes M et al (2008) CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemia-specific effectors. Biol Blood Marrow Transplant 14:518–530

    Article  PubMed  CAS  Google Scholar 

  141. Hartwig UF, Nonn M, Khan S et al (2008) Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 14:99–109

    Article  PubMed  CAS  Google Scholar 

  142. Nonn M, Herr W, Khan S et al (2008) Selective depletion of alloreactive T lymphocytes using patient-derived nonhematopoietic stimulator cells in allograft engineering. Transplantation 86:1427–1435

    Article  PubMed  CAS  Google Scholar 

  143. Marijt E, Wafelman A, van der Hoorn M et al (2007) Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica 92:72–80

    Article  PubMed  Google Scholar 

  144. Colvin GA, Berz D, Ramanathan M et al (2009) Nonengraftment haploidentical cellular immunotherapy for refractory malignancies: tumor responses without chimerism. Biol Blood Marrow Transplant 15:421–431

    Article  PubMed  CAS  Google Scholar 

  145. Eljaafari A, Farre A, Duperrier K et al (2001) Generation of helper and cytotoxic CD4+T cell clones specific for the minor histocompatibility antigen H-Y, after in vitro priming of human T cells by HLA-identical monocyte-derived dendritic cells. Transplantation 71:1449–1455

    Article  PubMed  CAS  Google Scholar 

  146. Azuma T, Makita M, Ninomiya K et al (2002) Identification of a novel WT1-derived peptide which induces human leucocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br J Haematol 116:601–603

    Article  PubMed  CAS  Google Scholar 

  147. Falkenburg JH, Marijt WA, Heemskerk MH et al (2002) Minor histocompatibility antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol 9:497–502

    Article  PubMed  CAS  Google Scholar 

  148. Sadovnikova E, Parovichnikova EN, Savchenko VG et al (2002) The CD68 protein as a potential target for leukaemia-reactive CTL. Leukemia 16:2019–2026

    Article  PubMed  CAS  Google Scholar 

  149. Amrolia PJ, Reid SD, Gao L et al (2003) Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood 101:1007–1014

    Article  PubMed  CAS  Google Scholar 

  150. Mutis T (2003) Targeting alloreactive donor T-cells to hematopoietic system-restricted minor histocompatibility antigens to dissect graft-versus-leukemia effects from graft-versus-host disease after allogeneic stem cell transplantation. Int J Hematol 78:208–212

    Article  PubMed  CAS  Google Scholar 

  151. Fujiwara H, El Ouriaghli F, Grube M et al (2004) Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood 103:3076–3083

    Article  PubMed  CAS  Google Scholar 

  152. Guo Y, Niiya H, Azuma T et al (2005) Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 106:1415–1418

    Article  PubMed  CAS  Google Scholar 

  153. Tsuji T, Yasukawa M, Matsuzaki J et al (2005) Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood 106:470–476

    Article  PubMed  CAS  Google Scholar 

  154. Xue SA, Gao L, Hart D et al (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067

    Article  PubMed  CAS  Google Scholar 

  155. Ho WY, Nguyen HN, Wolfl M et al (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310:40–52

    Article  PubMed  CAS  Google Scholar 

  156. Heemskerk MH (2010) T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica 95:15–19

    Article  PubMed  CAS  Google Scholar 

  157. Ochi T, Fujiwara H, Yasukawa M (2010) Application of adoptive T-cell therapy using tumor antigen-specific T-cell receptor gene transfer for the treatment of human leukemia. J Biomed Biotechnol 521248

  158. Vera JF, Brenner MK, Dotti G (2009) Immunotherapy of human cancers using gene modified T lymphocytes. Curr Gene Ther 9:396–408

    Article  PubMed  CAS  Google Scholar 

  159. Xue SA, Gao L, Thomas S (2010) Development of a Wilms’ tumor antigen-specific T-cell receptor for clinical trials: engineered patient’s T cells can eliminate autologous leukemia blasts in NOD/SCID mice. Haematologica 95:126–134

    Article  PubMed  CAS  Google Scholar 

  160. Peinert S, Prince HM, Guru PM et al (2010) Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 5:678–686

    Article  CAS  Google Scholar 

  161. Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22

    Article  PubMed  Google Scholar 

  162. Brentjens R, Yeh R, Bernal Y et al (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18:666–668

    Article  PubMed  CAS  Google Scholar 

  163. Mohle R, Bautz F, Rafii S et al (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523–4530

    PubMed  CAS  Google Scholar 

  164. Bleakley M, Riddell SR (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4:371–380

    Article  PubMed  CAS  Google Scholar 

  165. Ruggeri L, Aversa F, Martelli MF et al (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202–218

    Article  PubMed  CAS  Google Scholar 

  166. Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943

    Article  PubMed  CAS  Google Scholar 

  167. Farag SS, Fehniger TA, Ruggeri L et al (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947

    Article  PubMed  CAS  Google Scholar 

  168. Ruggeri L, Capanni M, Urbani E (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    Article  PubMed  CAS  Google Scholar 

  169. Leung W, Iyengar R, Turner V et al (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172:644–650

    PubMed  CAS  Google Scholar 

  170. Verheyden S, Demanet C (2008) NK cell receptors and their ligands in leukemia. Leukemia 22:249–257

    Article  PubMed  CAS  Google Scholar 

  171. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057

    Article  PubMed  CAS  Google Scholar 

  172. Rubnitz JE, Inaba H, Ribeiro RC et al (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959

    Article  PubMed  CAS  Google Scholar 

  173. Cho D, Campana D (2009) Expansion and activation of natural killer cells for cancer immunotherapy. Korean J Lab Med 29:89–96

    Article  PubMed  CAS  Google Scholar 

  174. Siegler U, Meyer-Monard S, Jorger S et al (2010) Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 12:750–763

    Article  PubMed  CAS  Google Scholar 

  175. Koehl U, Sorensen J, Esser R et al (2004) IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 33:261–266

    Article  PubMed  CAS  Google Scholar 

  176. Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183

    PubMed  CAS  Google Scholar 

  177. Bruserud O, Kittang AO (2010) The chemokine system in experimental and clinical hematology. Curr Top Microbiol Immunol 341:3–12

    Article  PubMed  CAS  Google Scholar 

  178. Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58

    Article  PubMed  CAS  Google Scholar 

  179. Muller I, Kordowich S, Holzwarth C et al (2008) Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 40:25–32

    Article  PubMed  Google Scholar 

  180. Meuleman N, Tondreau T, Ahmad I et al (2009) Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 18:1247–1252

    Article  PubMed  Google Scholar 

  181. Gotherstrom C, Lundqvist A, Duprez IR et al (2011) Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy 13:269–278

    Article  PubMed  CAS  Google Scholar 

  182. Klyuchnikov E, Asenova S, Kern W et al (2010) Post-transplant immune reconstitution after unrelated allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma 51:1450–1463

    Article  PubMed  CAS  Google Scholar 

  183. Gross S, Walden P (2010) Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett 116:7–14

    Article  CAS  Google Scholar 

  184. Rosenberg SA, Restifo NP, Yang JC et al (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    Article  PubMed  CAS  Google Scholar 

  185. Smits EL, Ponsaerts P, Berneman ZN et al (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875

    Article  PubMed  CAS  Google Scholar 

  186. Weber J (2007) Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12:864–872

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E.S. is postdoctoral researcher of the Research Foundation Flanders (FWO-Vlaanderen), C.L. was funded by EBMT, N.H. and B.G. were funded by Leukaemia & Lymphoma Research and S.B. by Cancer Research U.K. This work was supported in part by research grants of the FWO-Vlaanderen (G.0082.08), the Belgian Foundation against Cancer, and the Methusalem program of the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelien L. J. Smits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smits, E.L.J., Lee, C., Hardwick, N. et al. Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunol Immunother 60, 757–769 (2011). https://doi.org/10.1007/s00262-011-1022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1022-6

Keywords

Navigation