Cancer Immunology, Immunotherapy

, Volume 60, Issue 4, pp 547–558 | Cite as

Targeting NKT cells and PD-L1 pathway results in augmented anti-tumor responses in a melanoma model

  • Kevin Durgan
  • Mohamed Ali
  • Paul Warner
  • Yvette E. Latchman
Original Article


Invariant or Type 1 NKT cells (iNKT cells) are a unique population of lymphocytes that share characteristics of T cells and natural killer (NK) cells. Various studies have shown that positive costimulatory pathways such as the CD28 and CD40 pathways can influence the expansion and cytokine production by iNKT cells. However, little is understood about the regulation of iNKT cells by negative costimulatory pathways. Here, we show that in vivo activation with α-GalCer results in increased cytokine production and expansion of iNKT cells in the absence of programmed cell death ligand-1 (PD-L1, B7-H1, and CD274). To study whether PD-L1 deficiency on NKT cells would enhance antigen-specific T-cell responses, we utilized CD8+ OT-1 OVA transgenic T cells. α-GalCer enhanced the expansion and cytokine production of OT-1 CD8+ cells after adoptive transfer into wild-type recipients. However, this expansion was significantly enhanced when OT-1 CD8+ T cells were adoptively transferred into PD-L1−/− recipients. To extend these results to a tumor model, we used the B16 melanoma system. PD-L1−/− mice given dendritic cells loaded with antigen and α-GalCer had a significant reduction in tumor growth and this was associated with increased trafficking of antigen-presenting cells and CD8+ T cells to the tumors. These data demonstrate that abrogating PDL1:PD-1 interactions during the activation of iNKT cells amplifies an anti-tumor response when coupled with DC vaccination.


Costimulation Programmed cell death-1 Programmed cell death ligand-1 Tumor Invariant NKT cells T cells 

Supplementary material

262_2010_963_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1.16 MB)


  1. 1.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237PubMedCrossRefGoogle Scholar
  2. 2.
    Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol 11:197–206Google Scholar
  3. 3.
    Berzofsky JA, Terabe M (2008) A novel immunoregulatory axis of NKT cell subsets regulating tumor immunity. Cancer Immunol Immunother 57:1679–1683PubMedCrossRefGoogle Scholar
  4. 4.
    Hayakawa Y, Takeda K, Yagita H, Van Kaer L, Saiki I, Okumura K (2001) Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol 166:6012–6018PubMedGoogle Scholar
  5. 5.
    DelaRosa O, Tarazona R, Casado JG, Alonso C, Ostos B, Pena J, Solana R (2002) Valpha24+ NKT cells are decreased in elderly humans. Exp Gerontol 37:213–217PubMedCrossRefGoogle Scholar
  6. 6.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629PubMedCrossRefGoogle Scholar
  7. 7.
    Nishimura T, Kitamura H, Iwakabe K, Yahata T, Ohta A, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nakui M, Sekimoto M, Koda T (2000) The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 12:987–994PubMedCrossRefGoogle Scholar
  8. 8.
    Ikarashi Y, Mikami R, Bendelac A, Terme M, Chaput N, Terada M, Tursz T, Angevin E, Lemonnier FA, Wakasugi H, Zitvogel L (2001) Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition: critical role for B7 in CD1d-dependent NKT cell interferon gamma production. J Exp Med 194:1179–1186PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M, Locksley RM, Kronenberg M (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100:8395–8400PubMedCrossRefGoogle Scholar
  10. 10.
    Uldrich AP, Crowe NY, Kyparissoudis K, Pellicci DG, Zhan Y, Lew AM, Bouillet P, Strasser A, Smyth MJ, Godfrey DI (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175:3092–3101PubMedGoogle Scholar
  11. 11.
    Zheng X, Zhang H, Yin L, Wang CR, Liu Y, Zheng P (2008) Modulation of NKT cell development by B7-CD28 interaction: an expanding horizon for costimulation. PLoS One 3:e2703PubMedCrossRefGoogle Scholar
  12. 12.
    Williams JA, Lumsden JM, Yu X, Feigenbaum L, Zhang J, Steinberg SM, Hodes RJ (2008) Regulation of thymic NKT cell development by the B7-CD28 costimulatory pathway. J Immunol 181:907–917PubMedGoogle Scholar
  13. 13.
    Kaneda H, Takeda K, Ota T, Kaduka Y, Akiba H, Ikarashi Y, Wakasugi H, Kronenberg M, Kinoshita K, Yagita H, Okumura K (2005) ICOS costimulates invariant NKT cell activation. Biochem Biophys Res Commun 327:201–207PubMedCrossRefGoogle Scholar
  14. 14.
    Akbari O, Stock P, Meyer EH, Freeman GJ, Sharpe AH, Umetsu DT, DeKruyff RH (2008) ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol 180:5448–5456PubMedGoogle Scholar
  15. 15.
    Wang J, Cheng L, Wondimu Z, Swain M, Santamaria P, Yang Y (2009) Cutting edge: CD28 engagement releases antigen-activated invariant NKT cells from the inhibitory effects of PD-1. J Immunol 182:6644–6647PubMedCrossRefGoogle Scholar
  16. 16.
    Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Kaer LV (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826PubMedCrossRefGoogle Scholar
  17. 17.
    Chang WS, Kim JY, Kim YJ, Kim YS, Lee JM, Azuma M, Yagita H, Kang CY (2008) Cutting edge: programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181:6707–6710PubMedGoogle Scholar
  18. 18.
    Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USAGoogle Scholar
  19. 19.
    Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513PubMedCrossRefGoogle Scholar
  20. 20.
    Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900PubMedCrossRefGoogle Scholar
  21. 21.
    Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650PubMedGoogle Scholar
  22. 22.
    Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618PubMedCrossRefGoogle Scholar
  23. 23.
    Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003) Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279PubMedCrossRefGoogle Scholar
  24. 24.
    Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nishimura T (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121–1128PubMedCrossRefGoogle Scholar
  25. 25.
    Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3:1163–1168PubMedCrossRefGoogle Scholar
  26. 26.
    Gumperz JE (2004) CD1d-restricted “NKT” cells and myeloid IL-12 production: an immunological crossroads leading to promotion or suppression of effective anti-tumor immune responses? J Leukoc Biol 76:307–313PubMedCrossRefGoogle Scholar
  27. 27.
    Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117:1195–1203PubMedCrossRefGoogle Scholar
  28. 28.
    Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183:87–97PubMedCrossRefGoogle Scholar
  29. 29.
    Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345PubMedGoogle Scholar
  30. 30.
    Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA, Roberts BL (1999) Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol 163:699–707PubMedGoogle Scholar
  31. 31.
    Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3:867–874PubMedCrossRefGoogle Scholar
  32. 32.
    Yamano T, Kaneda Y, Huang S, Hiramatsu SH, Hoon DS (2006) Enhancement of immunity by a DNA melanoma vaccine against TRP2 with CCL21 as an adjuvant. Mol Ther 13:194–202PubMedCrossRefGoogle Scholar
  33. 33.
    Begley J, Vo DD, Morris LF, Bruhn KW, Prins RM, Mok S, Koya RC, Garban HJ, Comin-Anduix B, Craft N, Ribas A (2008) Immunosensitization with a Bcl-2 small molecule inhibitor. Cancer Immunol ImmunotherGoogle Scholar
  34. 34.
    Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653PubMedCrossRefGoogle Scholar
  35. 35.
    Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205:2125–2138PubMedCrossRefGoogle Scholar
  36. 36.
    Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122PubMedCrossRefGoogle Scholar
  37. 37.
    Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895PubMedCrossRefGoogle Scholar
  38. 38.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedCrossRefGoogle Scholar
  39. 39.
    Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, Burg MB, Allison JP (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 94:8099–8103PubMedCrossRefGoogle Scholar
  40. 40.
    Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USAGoogle Scholar
  41. 41.
    Li B, VanRoey M, Wang C, Chen TH, Korman A, Jooss K (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15:1623–1634PubMedCrossRefGoogle Scholar
  42. 42.
    Wang L, Pino-Lagos K, de Vries VC, Guleria I, Sayegh MH, Noelle RJ (2008) Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci USA 105:9331–9336PubMedCrossRefGoogle Scholar
  43. 43.
    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029PubMedCrossRefGoogle Scholar
  44. 44.
    Currie AJ, Prosser A, McDonnell A, Cleaver AL, Robinson BW, Freeman GJ, van der Most RG (2009) Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J Immunol 183:7898–7908PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kevin Durgan
    • 1
  • Mohamed Ali
    • 1
  • Paul Warner
    • 1
  • Yvette E. Latchman
    • 1
    • 2
  1. 1.Research DivisionPuget Sound Blood CenterSeattleUSA
  2. 2.Department of Medicine, Division of HematologyUniversity of WashingtonSeattleUSA

Personalised recommendations