Skip to main content
Log in

Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-γ dependent manners

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Stimulation of double-stranded (ds)RNA receptors can increase the effectiveness of cancer vaccines, but the underlying mechanisms are not completely elucidated. In this study, we sought to determine critical roles of host IFN-α and IFN-γ pathways in the enhanced therapeutic efficacy mediated by peptide vaccines and polyinosinic-polycytidylic acid [poly(I:C)] stabilized by lysine and carboxymethylcellulose (poly-ICLC) in the murine central nervous system (CNS) GL261 glioma. C57BL/6-background wild type (WT), IFN-α receptor-1 (IFN-αR1)−/− or IFN-γ −/− mice bearing syngeneic CNS GL261 glioma received subcutaneous (s.c.) vaccinations with synthetic peptides encoding CTL epitopes with or without intramuscular (i.m.) injections of poly-ICLC. The combinational treatment induced a robust transcription of CXCL10 in the glioma site. Blockade of CXCL10 with a specific monoclonal antibody (mAb) abrogated the efficient CNS homing of antigen-specific type-1 CTL (Tc1). Both IFN-αR −/− and IFN-γ −/− hosts failed to up-regulate the CXCL10 mRNA and recruit Tc1 cells to the tumor site, indicating non-redundant roles of type-1 and type-2 IFNs in the effects of poly-ICLC-assisted vaccines. The efficient trafficking of Tc1 also required Tc1-derived IFN-γ. Our data point to critical roles of the host-IFN-α and IFN-γ pathways in the modulation of CNS glioma microenvironment, and the therapeutic effectiveness of poly-ICLC-assisted glioma vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BIL:

Brain infiltrating lymphocyte

CNS:

Central nervous system

mAb:

Monoclonal antibody

GAA:

Glioma-associated antigen

Tc1:

CTL with type-1 phenotype

References

  1. Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13:4565–4574

    Article  PubMed  CAS  Google Scholar 

  2. Salem ML, Kadima AN, Cole DJ, Gillanders WE (2005) Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother 28:220–228

    Article  PubMed  CAS  Google Scholar 

  3. McBride S, Hoebe K, Georgel P, Janssen E (2006) Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN. J Immunol 177:6122–6128

    PubMed  CAS  Google Scholar 

  4. Ngoi SM, Tovey MG, Vella AT (2008) Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta. J Immunol 181:7670–7680

    PubMed  CAS  Google Scholar 

  5. Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ (2006) The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 24:5119–5132

    Article  PubMed  CAS  Google Scholar 

  6. Yoneyama M, Kikuchi M, Matsumoto K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    PubMed  CAS  Google Scholar 

  7. Trumpfheller C, Caskey M, Nchinda G et al (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci U S A 105:2574–2579

    Article  PubMed  Google Scholar 

  8. Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176:3804–3812

    PubMed  CAS  Google Scholar 

  9. Gitlin L, Barchet W, Gilfillan S et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA 103:8459–8464

    Article  PubMed  CAS  Google Scholar 

  10. Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358

    Article  PubMed  CAS  Google Scholar 

  11. Zhu X, Nishimura F, Sasaki K et al (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10

    Article  PubMed  CAS  Google Scholar 

  12. Sasaki K, Zhu X, Vasquez C et al (2007) Preferential expression of very late antigen-4 on type 1 CTL cells plays a critical role in trafficking into central nervous system tumors. Cancer Res 67:6451–6458

    Article  PubMed  CAS  Google Scholar 

  13. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  PubMed  CAS  Google Scholar 

  14. Weber C, Alon R, Moser B, Springer TA (1996) Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J Cell Biol 134:1063–1073

    Article  PubMed  CAS  Google Scholar 

  15. Lloyd AR, Oppenheim JJ, Kelvin DJ, Taub DD (1996) Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 156:932–938

    PubMed  CAS  Google Scholar 

  16. Nishimura F, Dusak JE, Eguchi J et al (2006) Adoptive transfer of Type 1 CTL mediates effective anti-central nervous system tumor response: critical roles of IFN-inducible protein-10. Cancer Res 66:4478–4487

    Article  PubMed  CAS  Google Scholar 

  17. Fujita M, Zhu X, Ueda R et al (2009) Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 69:1587–1595

    Article  PubMed  CAS  Google Scholar 

  18. Fujita M, Zhu X, Sasaki K et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180:2089–2098

    PubMed  CAS  Google Scholar 

  19. Park C, Lee S, Cho IH et al (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. GLIA 53:248–256

    Article  PubMed  Google Scholar 

  20. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159:12–19

    Article  PubMed  CAS  Google Scholar 

  21. Jack CS, Arbour N, Manusow J et al (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    PubMed  CAS  Google Scholar 

  22. Liu MT, Chen BP, Oertel P et al (2000) The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J Immunol 165:2327–2330

    PubMed  CAS  Google Scholar 

  23. Farber JM (1997) Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61:246–257

    PubMed  CAS  Google Scholar 

  24. Ogasawara K, Hida S, Weng Y et al (2002) Requirement of the IFN-alpha/beta-induced CXCR3 chemokine signalling for CD8+ T cell activation. Genes Cells 7:309–320

    Article  PubMed  CAS  Google Scholar 

  25. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187:875–883

    Article  PubMed  CAS  Google Scholar 

  26. Nakajima C, Mukai T, Yamaguchi N et al (2002) Induction of the chemokine receptor CXCR3 on TCR-stimulated T cells: dependence on the release from persistent TCR-triggering and requirement for IFN-gamma stimulation. Eur J Immunol 32:1792–1801

    Article  PubMed  CAS  Google Scholar 

  27. Lazzeri E, Romagnani P (2005) CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord 5:109–118

    Article  PubMed  CAS  Google Scholar 

  28. Fife BT, Kennedy KJ, Paniagua MC et al (2001) CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 166:7617–7624

    PubMed  CAS  Google Scholar 

  29. Badovinac VP, Tvinnereim AR, Harty JT (2000) Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma 1. Science 290:1354–1358

    Article  PubMed  CAS  Google Scholar 

  30. Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937

    Article  PubMed  CAS  Google Scholar 

  31. Mailliard RB, Son YI, Redlinger R et al (2003) Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 171:2366–2373

    PubMed  CAS  Google Scholar 

  32. Marrack P, Kappler J, Mitchell T (1999) Type I interferons keep activated T cells alive. J Exp Med 189:521–530

    Article  PubMed  CAS  Google Scholar 

  33. Tabiasco J, Devevre E, Rufer N et al (2006) Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol 177:8708–8713

    PubMed  CAS  Google Scholar 

  34. Salem ML, Diaz-Montero CM, El-Naggar SA, Chen Y, Moussa O, Cole DJ (2009) The TLR3 agonist poly(I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naive recipient mice. Vaccine 27:549–557

    Article  PubMed  CAS  Google Scholar 

  35. Overwijk WW, de Visser KE, Tirion FH et al (2006) Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J Immunol 176:5213–5222

    PubMed  CAS  Google Scholar 

  36. Salem ML, az-Montero CM, Al-Khami AA et al (2009) Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol 182:2030–2040

    Article  PubMed  CAS  Google Scholar 

  37. Widner B, Fuchs D (2000) Immune activation and degradation of tryptophan. Mod Asp Immunobiol 1:105–108

    Google Scholar 

  38. Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, Brown RR (1986) Induction of tryptophan degradation in vitro and in vivo: a gamma-interferon-stimulated activity. J Interferon Res 6:389–396

    PubMed  CAS  Google Scholar 

  39. Uyttenhove C, Pilotte L, Theate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat Med 9:1269–1274

    Article  PubMed  CAS  Google Scholar 

  40. Van den EB (2003) A new mechanism of tumor resistance to the immune system, based on tryptophan breakdown by indoleamine 2, 3-dioxygenase. Bull Mem Acad R Med Belg 158:356–363

    Google Scholar 

  41. Grant R, Kapoor V (2003) Inhibition of indoleamine 2, 3-dioxygenase activity in IFN-gamma stimulated astroglioma cells decreases intracellular NAD levels. Biochem Pharmacol 66:1033–1036

    Article  PubMed  CAS  Google Scholar 

  42. Nishioka Y, Wen H, Mitani K et al (2003) Differential effects of IL-12 on the generation of alloreactive CTL mediated by murine and human dendritic cells: a critical role for nitric oxide. J Leukoc Biol 73:621–629

    Article  PubMed  CAS  Google Scholar 

  43. Yang T, Witham TF, Villa L et al (2002) Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res 62:2583–2591

    PubMed  CAS  Google Scholar 

  44. Utaisincharoen P, Anuntagool N, Arjcharoen S, Limposuwan K, Chaisuriya P, Sirisinha S (2004) Induction of iNOS expression and antimicrobial activity by interferon (IFN)-beta is distinct from IFN-gamma in Burkholderia pseudomallei-infected mouse macrophages. Clin Exp Immunol 136:277–283

    Article  PubMed  CAS  Google Scholar 

  45. Utaisincharoen P, Anuntagool N, Limposuwan K, Chaisuriya P, Sirisinha S (2003) Involvement of beta interferon in enhancing inducible nitric oxide synthase production and antimicrobial activity of Burkholderia pseudomallei-infected macrophages. Infect Immun 71:3053–3057

    Article  PubMed  CAS  Google Scholar 

  46. Bronte V, Kasic T, Gri G et al (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268

    Article  PubMed  CAS  Google Scholar 

  47. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  48. Salazar AM, Levy HB, Ondra S et al (1996) Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38:1096–1103

    Article  PubMed  CAS  Google Scholar 

  49. Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118:942–949

    Article  PubMed  CAS  Google Scholar 

  50. Hatano M, Kuwashima N, Tatsumi T et al (2004) Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J Transl Med 2:40

    Article  PubMed  CAS  Google Scholar 

  51. Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63:8487–8491

    PubMed  CAS  Google Scholar 

  52. Overwijk WW, Tsung A, Irvine KR et al (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286

    Article  PubMed  CAS  Google Scholar 

  53. Fallert BA, Reinhart TA (2002) Improved detection of simian immunodeficiency virus RNA by in situ hybridization in fixed tissue sections: combined effects of temperatures for tissue fixation and probe hybridization. J Virol Methods 99:23–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate generous funding from Musella Foundation, Pittsburgh Foundation as well as the following funds from the National Institute of Health (NIH): 1R01NS055140 (Hideho Okada), 1P01CA100327 (Hideho Okada), 2P01NS40923 (Hideho Okada) and 1P01 CA132714 (Pawel Kalinski, Todd A. Reinhart and Hideho Okada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideho Okada.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Fallert-Junecko, B.A., Fujita, M. et al. Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-γ dependent manners. Cancer Immunol Immunother 59, 1401–1409 (2010). https://doi.org/10.1007/s00262-010-0876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0876-3

Keywords

Navigation