Skip to main content

Advertisement

Log in

(E)-4-Hydroxy-3-methyl-but-2 enyl pyrophosphate-stimulated Vγ9Vδ2 T cells possess T helper type 1-promoting adjuvant activity for human monocyte-derived dendritic cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Vγ9Vδ2 T cells respond to pyrophosphate antigens and display potent antitumour activity in vitro. We have investigated the potential of the most potent phosphoantigen known to activate Vγ9Vδ2 T cells, (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP), as an adjuvant for dendritic cell (DC)-based vaccines. A single stimulation of peripheral blood mononuclear cells with HMB-PP and IL-2 was sufficient to generate lines of effector memory Vγ9Vδ2 T cells that retained their cytolytic and cytokine secretion activities. These cells induced differentiation of DC into semi-mature antigen-presenting cells expressing CD86, CD11c, CD54, HLA-DR, CD83 and CD40, which secreted low levels of bioactive IL-12 but no IL-10. Vγ9Vδ2 T cells also strongly costimulated IL-12 release but inhibited IL-10 production by lipopolysaccharide (LPS)-stimulated DC. When substituted for Vγ9Vδ2 T cells, IFN-γ did not induce full DC maturation but it augmented IL-12 and inhibited IL-10 release by LPS-stimulated DC, in a manner similar to HMB-PP-activated Vγ9Vδ2 T cells. Our findings indicate that Vγ9Vδ2 T cells, stimulated with nanomolar concentrations of HMB-PP, strongly promote T helper type 1 (Th1) responses through their ability to induce DC maturation and IL-12 secretion. This adjuvant activity may prove useful in DC-based cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

BrHPP:

Bromohydrin pyrophosphate

α-GalCer:

α-Galactosylceramide

DC:

Dendritic cell

ELISA:

Enzyme-linked immunosorbent assay

HMB-PP:

(E)-4-Hydroxy-3-methyl-but-2 enyl pyrophosphate

iDC:

Immature dendritic cell

IFN-γ:

Interferon-γ

iNKT cell:

Invariant natural killer T cell

IPP:

Isopentenyl pyrophosphate

LPS:

Lipopolysaccharide

mAb:

Monoclonal antibody

MHC:

Major histocompatibility complex

Ns:

Not significant

PAM:

Pamidronate

PBMC:

Peripheral blood mononuclear cells

poly I:C:

Polyinosinic–polycytidylic acid double-stranded RNA

TCM :

Central memory T cell

TCR:

T cell receptor

TEM :

Effector memory T cell

TEMRA :

Terminally differentiated memory T cell

Th:

Helper T cell

TNF-α:

Tumour necrosis factor-α

References

  1. Morita CT, Jin C, Sarikonda G, Wang H (2007) Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ9Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215:59–76

    Article  CAS  PubMed  Google Scholar 

  2. Moser B, Eberl M (2007) γδ T cells: novel initiators of adaptive immunity. Immunol Rev 215:89–102

    Article  CAS  PubMed  Google Scholar 

  3. Hara T, Mizuno Y, Takaki K, Takada H, Akeda H, Aoki T, Nagata M, Ueda K, Matsuzaki G, Yoshikai Y (1992) Predominant activation and expansion of Vγ9-bearing γδ T cells in vivo as well as in vitro in Salmonella infection. J Clin Invest 90:204–210

    Article  CAS  PubMed  Google Scholar 

  4. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M, Peyrat MA, Caccamo N, Sireci G, Salerno A (2001) Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9Vδ2 T lymphocytes. J Infect Dis 184:1082–1085

    Article  CAS  PubMed  Google Scholar 

  5. Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H, Kabelitz D, Wesch D (2007) Lysis of a broad range of epithelial tumor cells by human γδ T cells: involvement of NKG2D ligands and T-cell receptor-versus NKG2D-dependent recognition. Scand J Immunol 66:320–328

    Article  CAS  PubMed  Google Scholar 

  6. Agrati C, Cimini E, Sacchi A, Bordoni V, Gioia C, Casetti R, Turchi F, Tripodi M, Martini F (2009) Activated Vγ9Vδ2 T cells trigger granulocyte functions via MCP-2 release. J Immunol 182:522–529

    CAS  PubMed  Google Scholar 

  7. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B (2009) A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 5:e1000308

    Article  PubMed  Google Scholar 

  8. Ismaili J, Olislagers V, Poupot R, Fournié JJ, Goldman M (2002) Human γδ T cells induce dendritic cell maturation. Clin Immunol 103:296–302

    Article  CAS  PubMed  Google Scholar 

  9. Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, Poccia F, Gessani S (2005) Reciprocal activating interaction between dendritic cells and pamidronate-stimulated γδ T cells: role of CD86 and inflammatory cytokines. J Immunol 174:252–260

    CAS  PubMed  Google Scholar 

  10. Devilder MC, Maillet S, Bouyge-Moreau I, Donnadieu E, Bonneville M, Scotet E (2006) Potentiation of antigen-stimulated Vγ9Vδ2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J Immunol 176:1386–1393

    CAS  PubMed  Google Scholar 

  11. Caccamo N, Battistini L, Bonneville M, Poccia F, Fournié JJ, Meraviglia S, Borsellino G, Kroczek RA, La Mendola C, Scotet E, Dieli F, Salerno A (2006) CXCR5 identifies a subset of Vγ9Vδ2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol 177:5290–5295

    CAS  PubMed  Google Scholar 

  12. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human γδ T Cells. Science 309:264–268

    Article  CAS  PubMed  Google Scholar 

  13. Brandes M, Willimann K, Bioley G, Lévy N, Eberl M, Luo M, Tampé R, Lévy F, Romero P, Moser B (2009) Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses. Proc Natl Acad Sci USA 106:2307–2312

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT (1994) Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci USA 91:8175–8179

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:155–158

    Article  CAS  PubMed  Google Scholar 

  16. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett 509:317–322

    Article  CAS  PubMed  Google Scholar 

  17. Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H (2003) Microbial isoprenoid biosynthesis and human γδ T cell activation. FEBS Lett 544:4–10

    Article  CAS  PubMed  Google Scholar 

  18. Kunzmann V, Bauer E, Wilhelm M (1999) γδ T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  CAS  PubMed  Google Scholar 

  19. Gober HJ, Kistowska M, Angman L, Jenö P, Mori L, De Libero G (2003) Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168

    Article  CAS  PubMed  Google Scholar 

  20. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, Voss SD, Morrissey LW, DeMars R, Welcj WJ, Bolhuis RLH, Sondel PM (1990) Recognition by human Vγ9Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250:1269–1273

    Article  CAS  PubMed  Google Scholar 

  21. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A (2005) Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J Immunol 174:1338–1347

    CAS  PubMed  Google Scholar 

  22. Mattarollo SR, Kenna T, Nieda M, Nicol AJ (2007) Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol Immunother 56:1285–1297

    Article  CAS  PubMed  Google Scholar 

  23. Vantourout P, Mookerjee-Basu J, Rolland C, Pont F, Martin H, Davrinche C, Martinez LO, Perret B, Collet X, Périgaud C, Peyrottes S, Champagne E (2009) Specific requirements for Vγ9Vδ2 T cell stimulation by a natural adenylated phosphoantigen. J Immunol 183:3848–3857

    Article  CAS  PubMed  Google Scholar 

  24. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP (2003) γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206

    Article  CAS  PubMed  Google Scholar 

  25. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457

    Article  CAS  PubMed  Google Scholar 

  26. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galéa C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Négrier S (2008) Phase-I study of Innacell γδ, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using γδ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476

    Article  CAS  PubMed  Google Scholar 

  28. June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716

    Article  CAS  PubMed  Google Scholar 

  29. Altincicek B, Moll J, Campos N, Foerster G, Beck E, Hoeffler JF, Grosdemange-Billiard C, Rodríguez-Concepción M, Rohmer M, Boronat A, Eberl M, Jomaa H (2001) Cutting edge: human γδ T cells are activated by intermediates of the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis. J Immunol 166:3655–3658

    CAS  PubMed  Google Scholar 

  30. Reichenberg A, Hintz M, Kletschek Y, Kuhl T, Haug C, Engel R, Moll J, Ostrovsky DN, Jomaa H, Eberl M (2003) Replacing the pyrophosphate group of HMB-PP by a diphosphonate function abrogates its potential to activate human γδ T cells but does not lead to competitive antagonism. Bioorg Med Chem Lett 13:1257–1260

    Article  CAS  PubMed  Google Scholar 

  31. Doherty DG, Norris S, Madrigal-Estebas L, McEntee G, Traynor O, Hegarty JE, O’Farrelly C (1999) The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 163:2314–2321

    CAS  PubMed  Google Scholar 

  32. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C, Salerno A (2003) Differentiation of effector/memory Vδ2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198:391–397

    Google Scholar 

  33. Martino A, Casetti R, D’Alessandri A, Sacchi A, Poccia F (2005) Complementary function of γδ T-lymphocytes and dendritic cells in the response to isopentenyl-pyrophosphate and lipopolysaccharide antigens. J Clin Immunol 25:230–237

    Article  CAS  PubMed  Google Scholar 

  34. Devilder MC, Allain S, Dousset C, Bonneville M, Scotet E (2009) Early triggering of exclusive IFN-γ responses of human Vγ9Vδ2 T cells by TLR-activated myeloid and plasmacytoid dendritic cells. J Immunol 183:3625–3633

    Article  CAS  PubMed  Google Scholar 

  35. Bendelac A, Savage PT, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  36. Nakagawa R, Nagafune I, Tazunoki Y, Ehara H, Tomura H, Iijima R, Motoki K, Kamishohara M, Seki S (2001) Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice. J Immunol 166:6578–6584

    CAS  PubMed  Google Scholar 

  37. Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI (2002) Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood 99:1259–1266

    Article  CAS  PubMed  Google Scholar 

  38. Kelly-Rogers J, Madrigal-Estebas L, O’Connor T, Doherty DG (2006) Activation-induced expression of CD56 by T cells is associated with a reprogramming of cytolytic activity and cytokine secretion profile in vitro. Hum Immunol 67:863–873

    Article  CAS  PubMed  Google Scholar 

  39. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  CAS  PubMed  Google Scholar 

  40. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nishimura T (1999) The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121–1128

    Article  CAS  PubMed  Google Scholar 

  41. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279

    Article  CAS  PubMed  Google Scholar 

  42. Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3:1163–1168

    Article  CAS  PubMed  Google Scholar 

  43. Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT, Brenner MB (2002) CD1-mediated γ/δ T cell maturation of dendritic cells. J Exp Med 196:1575–1584

    Article  CAS  PubMed  Google Scholar 

  44. Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA (2005) A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633

    Article  CAS  PubMed  Google Scholar 

  45. Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449

    Article  CAS  PubMed  Google Scholar 

  46. Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, Golan DE, Brenner MB (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3:495–507

    Article  CAS  PubMed  Google Scholar 

  47. Battistini L, Caccamo N, Borsellino G, Meraviglia S, Angelini DF, Dieli F, Cencioni MT, Salerno A (2005) Homing and memory patterns of human γδ T cells in physiopathological situations. Microbes Infect 7:510–517

    Article  CAS  PubMed  Google Scholar 

  48. Correia DV, d’Orey F, Cardoso BA, Lança T, Grosso AR, deBarros A, Martins LR, Barata JT, Silva-Santos B (2009) Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human γδ T-cells. PLoS One 4:e5657

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hassan Jomaa, Armin Reichenberg and Matthias Eberl for providing HMB-PP. Thanks to Conleth Feighery, John Jackson, Jacinta Kelly, Andrew Hogan, Melissa Conroy and Shijuan Grace Zeng for helpful discussions. This work was supported by grants from the Irish Research Council for Science Engineering and Technology (to MRD) and Science Foundation Ireland (LME).

Conflict of interest statement

The authors declare no financial or commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Doherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, M.R., Madrigal-Estebas, L., Tobin, L.M. et al. (E)-4-Hydroxy-3-methyl-but-2 enyl pyrophosphate-stimulated Vγ9Vδ2 T cells possess T helper type 1-promoting adjuvant activity for human monocyte-derived dendritic cells. Cancer Immunol Immunother 59, 1109–1120 (2010). https://doi.org/10.1007/s00262-010-0839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0839-8

Keywords

Navigation