Skip to main content

Advertisement

Log in

Comparison of AAV/IL-7 autocrine (T cell) versus paracrine (DC) gene delivery for enhancing CTL stimulation and function

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive transfer of antigen-specific cytotoxic T lymphocyte (CTL) into patients holds promise in treating cancer. Such anti-cancer CTL are stimulated by professional antigen-presenting dendritic cells (DC). We hypothesize the gene delivery of various Th1-response cytokines, such as interleukin 7 (IL-7), should further enhance CTL stimulation and activity. However, the issue as to which cell type, DC (paracrine) or the T cell (autocrine), should express a particular Th1 cytokine gene for optimal CTL stimulation has never been addressed. We used adeno-associated virus-2 (AAV) to compare delivery of IL-7 and IL-2 genes into DC or T cells and to exogenous commercial cytokines for generating robust carcinoembryonic antigen (CEA)-specific CTL. AAV/IL-7 transduction of T cells (autocrine delivery) generated CTL with the highest killing capability. Consistent with this, AAV/IL-7 delivery generated T cell populations with the highest proliferation, highest interferon γ expression, highest CD8(+):CD4(+) ratio, highest CD8(+), CD69(+) levels, and lowest CD4(+), CD25(+) (Treg) levels. These data are consistent with higher killing by the AAV/IL-7-altered CTL. These data strongly suggest that IL-7 autocrine gene delivery is optimal for CTL generation. These data also suggest Th1 cytokine autocrine versus paracrine delivery is an important issue for immuno-gene therapy and uncovers new questions into cytokine mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cells

GM-CSF:

Granulocyte–macrophage colony stimulating factor

IL-7:

Interleukin 7

exo:

Exogenous

References

  1. Steinman RA (1991) The dendritic cell system and its role in immunogenicity. Ann Rev Imm 9:271–296

    Article  CAS  Google Scholar 

  2. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  CAS  PubMed  Google Scholar 

  3. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuker G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83–93

    Article  CAS  PubMed  Google Scholar 

  4. Young JW, Inaba K (1994) Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J Exp Med 183:7–11

    Article  Google Scholar 

  5. Zivotgel L, Mayordomo JI, Tjandrawan T, DeLao AB, Clarke MR, Lotze MT, Storkus WJ (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulationm and T helper cell I-associated cytokines. J Exp Med 183:87–97

    Article  Google Scholar 

  6. Paglia P, Chiodoni C, Rodolfo M, Colombo MP (1996) Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 183:317–322

    Article  CAS  PubMed  Google Scholar 

  7. Alexander M, Salgaller ML, Celis E, Settem A, Barnes WA, Rosenberg SA, Steller MA (1996) Generation of tumor-specific cytotoxic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 E7 epitope. Am J Obstet Gynecol 175:1586–1593

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Chiriva-Internati M, Grizzi F, Salati E, Roman JJ, Lim S, Hermonat PL (2001) Rapid induction of cytotoxic T-cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther 8:948–957

    Article  CAS  PubMed  Google Scholar 

  9. You H, Liu Y, Cong M, You CX, Mehta JL, Hermonat PL (2006) HBV genes induce cytotoxic T lymphocyte response upon adeno-associated virus (AAV) vector delivery into dendritic cells. J Viral Hepatitis 13:605–612

    Article  CAS  Google Scholar 

  10. Prasad CK, Liu Y, You C, Luo R, Mehta JL, Hermonat PL (2007) Generation, comparison of cytotoxic T lymphocyte stimulation against Her2/neu by rAAV and protein antigen loading of dendritic cells. In: Hermonat PL (ed) Book chapter in cancer and gene therapy. Research Signpost, Kerala, pp 17–28

  11. Mahadevan M, Liu Y, Luo RC, You CX, You H, Hermonat PL (2007) Generation of robust cytotoxic T lymphocytes against prostate specific antigen by transduction of dendritic cells using protein and recombinant adeno associated virus. Cancer Immunol Immunother 56:1615–1624

    Article  CAS  PubMed  Google Scholar 

  12. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev Cancer 5:263–274

    Article  CAS  Google Scholar 

  13. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting. In immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  14. Curiel TJ, Coukos G, Zhou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Santin AD, Mane M, Chiriva-Internati M, Parham GP, Ravaggi A, Hermonat PL (2000) Transduction and utility of the granulocyte macrophage-colony stimulating factor gene into dendritic cells by adeno-associated virus. J Interferon Cytokine Res 20:21–30

    Article  PubMed  Google Scholar 

  16. Maraskovsky E, Teepe M, Morrissey PJ, Braddy S, Miller RE, Lynch DH, Peschon JJ (1996) Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J Immunol 157:5315–5323

    CAS  PubMed  Google Scholar 

  17. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB, Meyer JD, Davison BL (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180:1955–1960

    Article  CAS  PubMed  Google Scholar 

  18. von-Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181:1519–1526

    Article  CAS  PubMed  Google Scholar 

  19. Puel A, Ziegler SF, Buckley RH, Leonard WJ (1998) Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet 20:394–397

    Article  CAS  PubMed  Google Scholar 

  20. Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432

    Article  CAS  PubMed  Google Scholar 

  21. Surh CD, Boyman O, Purton JF, Sprent J (2006) Homeostasis of memory T cells. Immunol Rev 211:154–163

    Article  CAS  PubMed  Google Scholar 

  22. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98:8732–8737

    Article  CAS  PubMed  Google Scholar 

  23. Kittipatarin C, Li WQ, Bulavin DV, Durum SK, Khaled AR (2006) Cell cycling through Cdc25A: transducer of Cytokine proliferative signals. Cell Cycle 5:907–912

    CAS  PubMed  Google Scholar 

  24. Rich BE, Leder P (1995) Transgenic expression of interleukin 7 restores T cell populations in nude mice. J Exp Med 181:1223–1228

    Article  CAS  PubMed  Google Scholar 

  25. Geiselhart LA, Humphries CA, Gregorio TA, Mou S, Subleski J, Komschlies KL (2001) IL-7 administration alters the CD4:CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J Immunol 166:3019–3027

    CAS  PubMed  Google Scholar 

  26. Chiriva-Internati M, Liu Y, Weidanz JA, Grizzi F, You H, Zhou W, Bumm K, Barogie B, Mehta JL, Hermonat PL (2003) Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 102:3100–3107

    Article  CAS  PubMed  Google Scholar 

  27. Rich BE (1997) Autocrine expression of interleukin-7 rescues lymphoid expansion in interleukin-7-deficient mice. Source Immunol 92:374–380

    CAS  Google Scholar 

  28. Hand TW, Morre M, Kaech SM (1997) Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc Natl Acad Sci USA 104:11730–11735

    Article  Google Scholar 

  29. de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, Banchereau J, Liu YJ, Lebecque S, Caux C (2003) The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 160:1666–1676

    Google Scholar 

  30. Sorg RV, McLellan AD, Hock BD, Fearnley DB, Hart DN (1998) Human dendritic cells express functional interleukin-7. Immunobiology 198:514–526

    CAS  PubMed  Google Scholar 

  31. Westermann J, Aicher A, Qin Z, Cayeux S, Daemen K, Blankenstein TH, Dorken B, Pezzutto A (1998) Retroviral interleukin-7 gene transfer into human dendritic cells enhances T cell activation. Gene Ther 5:264–271

    Article  CAS  PubMed  Google Scholar 

  32. Miller PW, Sharma S, Stolina M, Butterfield LH, Luo J, Lin Y, Dohadwala M, Batra RK, Wu L, Economou JS, Dubinett SM (2000) Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 11:53–65

    Article  CAS  PubMed  Google Scholar 

  33. Sharma S, Batra RK, Yang SC, Hillinger S, Zhu L, Atianzar K, Strieter RM, Riedl K, Huang M, Dubinett SM (2003) Interleukin-7 gene modified dendritic cells reduce pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Hum Gene Ther 14:1511–1524

    Article  CAS  PubMed  Google Scholar 

  34. Verhoeyen E, Dardalhon V, Ducrey-Rundquist O, Trono D, Taylor N, Cosset FL (2003) IL-7 surface engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood 101:2167–2174

    Article  CAS  PubMed  Google Scholar 

  35. Fisher AG, Burdet C, Bunce C, Merkenschlager M, Ceredig R (1995) Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. Int Immunol 7:415–423

    Article  CAS  PubMed  Google Scholar 

  36. Benjamin D, Sharma V, Knobloch TJ, Armitage AJ, Dayton MA, Goodwin RG (1994) Human B cell lines constitutively secrete IL-7 and express IL-7 receptors. J Immunol 152:4749–4757

    CAS  PubMed  Google Scholar 

  37. Mertsching E, Burdet C, Ceredig R (1995) IL-7 transgenic mice: analysis of the role of IL-7 in the differentiation of thymocytes in vivo and in vitro. Int Immunol 7:401–414

    Article  CAS  PubMed  Google Scholar 

  38. Asadullah K, Haeussler A, Friedrich M, Siegling A, Olaizola-Horn S, Trefzer U, Volk HD, Sterry W (1996) IL-7 mRNA is not overexpressed in mycosis fungoides and pleomorphic T-cell lymphoma and is likely to be an autocrine growth factor in vivo. Arch Dermatol Res 289:9–13

    Article  CAS  PubMed  Google Scholar 

  39. Oikawa S, Nakazato H, Kosaki G (1987) Primary structure of human carcinoembryonic antigen (CEA) deduced from cDNA sequence. Biochem Biophys Res Commun 142:511–518

    Article  CAS  PubMed  Google Scholar 

  40. Devos R, Plaetinck G, Cheroutre H, Simons G, Degrave W, Tavernier J, Remaut E, Fiers W (1983) Molecular cloning of human interleukin 2 cDNA and its expression in E. coli. Nucleic Acids Res 11:4307–4323

    Article  CAS  PubMed  Google Scholar 

  41. Goodwin RG, Lupton S, Schmierer A, Hjerrild KJ, Jerzy R, Clevenger W, Gillis S, Cosman D, Namen AE (1989) Human interleukin 7: molecular cloning and growth factor activity on human and murine lineage cells. Proc Natl Acad Sci USA 86:302–306

    Article  CAS  PubMed  Google Scholar 

  42. Pala P, Hussell T, Openshaw PJ (2000) Flow cytometric measurement of intracellular cytokines. J Immunol Methods 243:107–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fashion Footwear of New York (FFANY/QVC) through the Arkansas Breast Cancer Foundation. Drs. You and Liu contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Hermonat.

Additional information

C.-X. You and Y. Liu contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure (TIFF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, CX., Liu, Y., Shi, M. et al. Comparison of AAV/IL-7 autocrine (T cell) versus paracrine (DC) gene delivery for enhancing CTL stimulation and function. Cancer Immunol Immunother 59, 779–787 (2010). https://doi.org/10.1007/s00262-009-0798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0798-0

Keywords

Navigation