Cancer Immunology, Immunotherapy

, Volume 59, Issue 5, pp 715–727 | Cite as

Identification and characterization of a HER-2/neu epitope as a potential target for cancer immunotherapy

  • Eftychia LekkaEmail author
  • Angelos D. Gritzapis
  • Sonia A. Perez
  • Nikolaos Tsavaris
  • Ioannis Missitzis
  • Avgi Mamalaki
  • Michael Papamichail
  • Constantin N. Baxevanis
Original Article


Our aim is to develop peptide vaccines that stimulate tumor antigen-specific T-lymphocyte responses against frequently detected cancers. We describe herein a novel HLA-A*0201-restricted epitope, encompassing amino acids 828–836 (residues QIAKGMSYL), which is naturally presented by various HER-2/neu + tumor cell lines. HER-2/neu(828-836), [HER-2(9828)], possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent Class I binding assay. This peptide was stable for 3.5 h in an off-kinetic assay. HER-2(9828) was found to be immunogenic in HLA-A*0201 transgenic (HHD) mice inducing peptide-specific and functionally potent CTL and long-lasting anti-tumor immunity. Most important, using HLA-A*0201 pentamer analysis we could detect increased ex vivo frequencies of CD8+ T-lymphocytes specifically recognizing HER-2(9828) in 8 out of 20 HLA-A*0201+ HER-2/neu + breast cancer patients. Moreover, HER-2(9828)-specific human CTL recognized the tumor cell line SKOV3.A2 as well as the primary RS.A2.1.DR1 tumor cell line both expressing HER-2/neu and HLA-A*0201. Finally, therapeutic vaccination with HER-2(9828) in HHD mice was proven effective against established transplantable ALC.A2.1.HER tumors, inducing complete tumor regression in 50% of mice. Our data encourage further exploitation of HER-2(9828) as a promising candidate for peptide-based cancer vaccines.


HER-2/neu Peptide vaccines HHD mice CTL Breast cancer 



This work was supported by grants from the General Secretariat of Research and Technology EPAN YB/3 and PENED 03ED113 (to C.N.B.), and from Regional Operational Program Attika No. 20; MIS code 59605 GR (to M.P.) The authors have no financial conflict of interest.


  1. 1.
    Rötzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, Jung G, Rammensee HG (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348(6298):252–254CrossRefPubMedGoogle Scholar
  2. 2.
    Wallny HJ, Rammensee HG (1990) Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature 343(6255):275–278CrossRefPubMedGoogle Scholar
  3. 3.
    Palena C, Abrams SI, Schlom J, Hodge JW (2006) Cancer vaccines: preclinical studies and novel strategies. Adv Cancer Res 95:115–145CrossRefPubMedGoogle Scholar
  4. 4.
    Brichard VA, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, Coulie P, Boon T (1993) The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 178(2):489–495CrossRefPubMedGoogle Scholar
  5. 5.
    Kawakami Y, Eliyahu S, Sakaguchi A, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA (1004) Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180(1):347–352CrossRefGoogle Scholar
  6. 6.
    Coulie PG, Brichard V, Van Pel A, Wölfel T, Schneider J, Traversari C, Mattei S, De Plaen E, Lurquin C, Szikora JP, Renauld JC, Boon T (1994) A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 180(1):35–42CrossRefPubMedGoogle Scholar
  7. 7.
    Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264(5159):716–719CrossRefPubMedGoogle Scholar
  8. 8.
    Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176(5):1453–1457CrossRefPubMedGoogle Scholar
  9. 9.
    Tsai V, Southwood S, Sidney J, Sakaguchi K, Kawakami Y, Appella E, Sette A, Celis E (1997) Identification of subdominant CTL epitopes of the GP100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells. J Immunol 158(4):1796–1802PubMedGoogle Scholar
  10. 10.
    Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefPubMedGoogle Scholar
  11. 11.
    Baxevanis CN, Gritzapis AD, Tsitsilonis OE, Katsoulas HL, Papamichail M (2002) HER-2/neu-derived peptide epitopes are also recognized by cytotoxic CD3(+)CD56(+) (natural killer T) lymphocytes. Int J Cancer 98(6):864–872CrossRefPubMedGoogle Scholar
  12. 12.
    Rongcun Y, Salazar-Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Kono K, Hising C, Petersson M, Larsson O, Lan L, Appella E, Sette A, Celis E, Kiessling R (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163(2):1037–1044PubMedGoogle Scholar
  13. 13.
    Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT et al (2006) Immunogenic HER-2/neu peptides as tumor vaccines. Cancer Immunol Immunother 55(1):85–95CrossRefPubMedGoogle Scholar
  14. 14.
    Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, Kono K et al (2002) Cellular immunity to the HER-2/neu protooncogene. Adv Cancer Res 85:101–144CrossRefPubMedGoogle Scholar
  15. 15.
    Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, von Hofe E, Kallinteris NL, Baxevanis CN (2007) Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int J Cancer 121(9):2031–2041CrossRefPubMedGoogle Scholar
  16. 16.
    Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E (2007) Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 67(3):1326–1334CrossRefPubMedGoogle Scholar
  17. 17.
    Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E (1999) Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59(2):431–435PubMedGoogle Scholar
  18. 18.
    Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P, Perez S, Papamichail M, Baxevanis CN (2008) Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties. J Immunol 181(1):146–154PubMedGoogle Scholar
  19. 19.
    Brinkman JA, Fausch SC, Weber JS, Kast WM (2004) Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther 4(2):181–198 ReviewCrossRefPubMedGoogle Scholar
  20. 20.
    Bernhard H, Salazar L, Schiffman K, Smorlesi A, Schmidt B, Knutson KL, Disis ML (2002) Vaccination against the HER-2/neu oncogenic protein. Endocr Relat Cancer 9(1):33–44 ReviewCrossRefPubMedGoogle Scholar
  21. 21.
    Disis ML, Knutson KL, McNeel DG, Davis D, Schiffman K (2001) Clinical translation of peptide-based vaccine trials: the HER-2/neu model. Crit Rev Immunol 21(1–3):263–273 ReviewPubMedGoogle Scholar
  22. 22.
    Murray JL, Przepiorka D, Ioannides CG (2000) Clinical trials of HER- 2/neu-specific vaccines. Semin Oncol 27(6 Suppl 1):71–75 discussion 92–100. ReviewPubMedGoogle Scholar
  23. 23.
    Singh R, Paterson Y (2007) In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines. Cancer Immunol Immunother 56(6):927–938CrossRefPubMedGoogle Scholar
  24. 24.
    Rolla S, Nicolo C, Malinarich S, Orsini M, Forni G, Cavallo F, Ria F (2006) Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J Immunol 177(11):7626–7633PubMedGoogle Scholar
  25. 25.
    Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P, Wei WZ, Cavallo F (2006) Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res 66(15):7734–7740CrossRefPubMedGoogle Scholar
  26. 26.
    Gritzapis AD, Mahaira LG, Perez SA, Cacoullos NT, Papamichail M, Baxevanis CN (2006) Vaccination with human HER-2/neu (435–443) CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo. Cancer Res 66(10):5452–5460CrossRefPubMedGoogle Scholar
  27. 27.
    Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E, Azeke E, Disis ML (2006) IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 177(1):84–91PubMedGoogle Scholar
  28. 28.
    Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM (2005) Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J Exp Med 201(10):1591–1602CrossRefPubMedGoogle Scholar
  29. 29.
    Pupa SM, Iezzi M, Di Carlo E, Invernizzi A, Cavallo F, Meazza R, Comes A, Ferrini S, Musiani P, Menard S (2005) Inhibition of mammary carcinoma development in HER-2/neu transgenic mice through induction of autoimmunity by xenogeneic DNA vaccination. Cancer Res 65(3):1071–1078PubMedGoogle Scholar
  30. 30.
    Quaglino E, Rolla S, Iezzi M, Spadaro M, Musiani P, De Giovanni C, Lollini PL, Lanzardo S, Forni G, Sanges R et al (2004) Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions. J Clin Invest 113(5):709–717PubMedGoogle Scholar
  31. 31.
    Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8+ T lymphocytes from beta2 microglobulin (beta2 m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185(12):2043–2051CrossRefPubMedGoogle Scholar
  32. 32.
    Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53(2):87–94CrossRefPubMedGoogle Scholar
  33. 33.
    Peoples GE, Gurney GM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 23(30):7536–7545CrossRefPubMedGoogle Scholar
  34. 34.
    Vertuani SA, Sette A, Sidney J, Southwood S, Fikes J, Keogh E, Lindencrona JA, Ishioka G, Levitskaya J, Kiessling R (2004) Improved immunogenicity of an immunodominant epitope of the HER-2/neu protooncogene by alterations of MHC contact residues. J Immunol 172(6):3501–3508PubMedGoogle Scholar
  35. 35.
    Betts MR, Brenchley JM, Price DA, DeRosa SC, Douek DC, Roederer M, Koup RA (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:65–78CrossRefPubMedGoogle Scholar
  36. 36.
    Nishikawa H, Qian F, Tsuji T, Ritter G, Old LJ, Gnjatic S, Odunsi K (2006) Influence of CD4+CD25+ regulatory T cells on low/high-avidity CD4+ T cells following peptide vaccination. J Immunol 176:6340–6346PubMedGoogle Scholar
  37. 37.
    Asemissen AM, Keilholz U, Tenzer S, Muller M, Walter S, Stevanovic S, Schild H, Letsch A, Thiel E, Rammensee HG, Scheibenbogen C (2006) Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 12:7476–7482CrossRefPubMedGoogle Scholar
  38. 38.
    Rosenberg SA et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4(3):321–327CrossRefPubMedGoogle Scholar
  39. 39.
    Clay TM et al (1999) Changes in the fine specificity of gp100(209–217)-reactive T cells in patients following vaccination with a peptide modified at an HLA-A2.1 anchor residue. J Immunol 162(3):1749–1755PubMedGoogle Scholar
  40. 40.
    Andersen ML, Ruhwald M, Nissen MH, Buus S, Claesson MH (2003) Self-peptides with intermediate capacity to bind and stabilize MHC class I molecules may be immunogenic. Scand J Immunol 57(1):21–27CrossRefPubMedGoogle Scholar
  41. 41.
    McMahan RH, McWilliams JA, Jordan KR, Dow SW, Wilson DB, Slansky JE (2006) Relating TCR-peptide-MHC affinity to immunogenicity for the design of tumor vaccines. J Clin Invest 116(9):2543–2551PubMedGoogle Scholar
  42. 42.
    Slansky JE et al (2000) Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13(4):529CrossRefPubMedGoogle Scholar
  43. 43.
    Li L, Chao QG, Ping LZ, Xue C, Xia ZY, Qian D, Shi-ang H (2009) The prevalence of FOXP3+ regulatory T-cells in peripheral blood of patients with NSCLC. Cancer Biother Radiopharm 24(3):357–367Google Scholar
  44. 44.
    Ke X, Wang J, Li L, Chen IH, Wang H, Yang XF (2008) Roles of CD4+CD25(high) FOXP3+ tregs in lymphomas and tumors are complex. Front Biosci 13:3986–4001 ReviewPubMedGoogle Scholar
  45. 45.
    Waziri A, Killory B, Ogden AT 3rd, Canoll P, Anderson RC, Kent SC, Anderson DE, Bruce JN (2008) Preferential in situ CD4+CD56+ T cell activation and expansion within human glioblastoma. J Immunol 180(11):7673–7680PubMedGoogle Scholar
  46. 46.
    Liu L, Wu G, Yao JX, Ding Q, Huang SA (2008) CD4+CD25 high regulatory cells in peripheral blood of cancer patients. Neuro Endocrinol Lett 29(2):240–245PubMedGoogle Scholar
  47. 47.
    Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(21):6301–6311CrossRefPubMedGoogle Scholar
  48. 48.
    Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T (2005) CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep 14(5):1269–1273PubMedGoogle Scholar
  49. 49.
    Perez SA, Karamouzis MV, Skarlos DV, Ardavanis A, Sotiriadou NN, Iliopoulou EG, Salagianni ML, Orphanos G, Baxevanis CN, Rigatos G, Papamichail M (2007) CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin Cancer Res 13(9):2714–2721CrossRefPubMedGoogle Scholar
  50. 50.
    Goforth R, Salem AK, Zhu X, Miles S, Zhang XQ, Lee JH, Sandler AD (2009) Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother 58(4):517–530CrossRefPubMedGoogle Scholar
  51. 51.
    Turner MS, Cohen PA, Finn O (2007) Lack of effective MUC1 tumor antigen-specific immunity in MUC1-transgenic mice results from a Th/T regulatory cell imbalance that can be corrected by adoptive transfer of wild-type Th cells. J Immunol 178(5):2787–2793PubMedGoogle Scholar
  52. 52.
    Klyushnenkova EN, Kouiavskaia DV, Berard CA, Alexander RB (2009) Cutting edge: permissive MHC class II allele changes the pattern of antitumor immune response resulting in failure of tumor rejection. J Immunol 182(3):1242–1246PubMedGoogle Scholar
  53. 53.
    Wang HY, Peng G, Guo Z, Shevach EM, Wang RF (2005) Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol 174(5):2661PubMedGoogle Scholar
  54. 54.
    Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, Bancereau J, Ueno H (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. PNAS 104(52):20884CrossRefPubMedGoogle Scholar
  55. 55.
    Salazar LG, Coveler AL, Swensen RE, Cooley TA, Goodell V, Schiffman K, Disis ML (2007) Kinetics of tumor-specific T-cell response development after active immunization in patients with HER-2/neu overexpressing cancers. Clin Immunol 125(3):275–280CrossRefPubMedGoogle Scholar
  56. 56.
    Mittendorf EA, Peoples GE, Singletary SE (2007) Breast cancer vaccines: promise for the future or pipe dream? Cancer 110(8):1677–1686CrossRefPubMedGoogle Scholar
  57. 57.
    Mittendorf EA, Storrer CE, Foley RJ, Harris K, Jama Y, Shriver CD et al (2006) Evaluation of the HER2/neu-derived peptide GP2 for use in a peptide-based breast cancer vaccine trial. Cancer 106(11):2309–2317CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Eftychia Lekka
    • 1
    Email author
  • Angelos D. Gritzapis
    • 1
  • Sonia A. Perez
    • 1
  • Nikolaos Tsavaris
    • 2
  • Ioannis Missitzis
    • 3
  • Avgi Mamalaki
    • 4
  • Michael Papamichail
    • 1
  • Constantin N. Baxevanis
    • 1
  1. 1.Cancer Immunology and Immunotherapy CenterSaint Savas Cancer HospitalAthensGreece
  2. 2.Pathophysiology Department, Laikon General Hospital and Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  3. 3.Breast Cancer ClinicSaint Savas Cancer HospitalAthensGreece
  4. 4.Laboratory of Molecular Biology and Immunobiotechnology, Department of BiochemistryHellenic Pasteur InstituteAthensGreece

Personalised recommendations