Multimer technologies for detection and adoptive transfer of antigen-specific T cells

  • Rosaely Casalegno-Garduño
  • Anita Schmitt
  • Junxia Yao
  • Xinchao Wang
  • Xun Xu
  • Mathias Freund
  • Michael Schmitt


Identification and purification of antigen-specific T cells without altering their functional status are of high scientific and clinical interest. Staining with major histocompatibility complex (MHC)-peptide multimers constitutes a very powerful method to study antigen-specific T-cell subpopulations, allowing their direct visualization and quantification. MHC-peptide multimers, such as dimers, tetramers, pentamers, streptamers, dextramers and octamers have been used to evaluate the frequency of CD8+ T cells, specific for tumor/leukemia-associated antigens as well as for viral antigens, e.g., CMVpp65 and EBV-EBNA. Moreover, MHC-peptide multimers have been used for rapid and efficient ex vivo isolation and expansion of T cells. A recent development in the field of MHC-peptide multimers led to the purification of CD8+ T cells specific for leukemia antigens. This might help to select leukemia-specific donor lymphocyte infusions (DLIs), thus allowing dissection of the noxious graft-versus-host disease (GvHD) from beneficial anti-viral and even anti-leukemic effects. This review covers different types of MHC-peptide multimers and their applications, as well as the impact that multimers might have on further development of DLIs.


Tetramers Streptamers Flow cytometry Adoptive T-cell transfer 


  1. 1.
    Hebart H, Rauser G, Stevanovic S et al (2003) A CTL epitope from human cytomegalovirus IE1 defined by combining prediction of HLA binding and proteasomal immune responses in patients after allogeneic stem cell transplantation. Exp Hematol 31:966–973CrossRefPubMedGoogle Scholar
  2. 2.
    Manley TJ, Luy L, Jones T et al (2004) Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104:1075–1082CrossRefPubMedGoogle Scholar
  3. 3.
    Grigoleit GU, Kapp M, Hebart H et al (2007) Dendritic cell vaccination in allogeneic stem cell recipients: induction of human cytomegalovirus (HCMV)-specific cytotoxic T-lymphocyte responses even in patients receiving a transplant from an HCMV-seronegative donor. J Infect Dis 196:699–704CrossRefPubMedGoogle Scholar
  4. 4.
    Chattopadhyay PK, Hogerkorp CM, Roederer M (2008) A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 125:441–449CrossRefPubMedGoogle Scholar
  5. 5.
    Duplan V, Suberbielle E, Napper CE et al (2007) Tracking antigen-specific CD8+ T cells in the rat using MHC class I multimers. J Immunol Methods 320:30–39CrossRefPubMedGoogle Scholar
  6. 6.
    Svensson A, Nordström I, Sun JB, Eriksson K (2005) Protective immunity to genital herpes simplex [correction of simpex] virus type 2 infection is mediated by T-bet. J Immunol 174:6266–6273PubMedGoogle Scholar
  7. 7.
    Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599CrossRefPubMedGoogle Scholar
  8. 8.
    Knabel M, Franz TJ, Schiemann M et al (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8:631–637CrossRefPubMedGoogle Scholar
  9. 9.
    Batard P, Peterson DA, Devêvre E et al (2006) Dextramers: new generation of fluorescent MHC class I/peptide multimers for visualization of antigen-specific CD8+ T cells. J Immunol Methods 310:136–148CrossRefPubMedGoogle Scholar
  10. 10.
    Guillaume P, Legler DF, Boucheron N et al (2003) Soluble major histocompatibility complex-peptide octamers with impaired CD8 binding selectively induce FAS-dependent apoptosis. J Biol Chem 278:4500–4509CrossRefPubMedGoogle Scholar
  11. 11.
    Schneck JP (2000) Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol Invest 29:163–169CrossRefPubMedGoogle Scholar
  12. 12.
    Dal Porto J, Johansen TE, Catipović B et al (1993) A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations. Proc Natl Acad Sci USA 90:6671–6675CrossRefPubMedGoogle Scholar
  13. 13.
    Greten TF, Schneck JP (2002) Development and use of multimeric major histocompatibility complex molecules. Clin Diagn Lab Immunol 9:216–220PubMedGoogle Scholar
  14. 14.
    Neudorfer J, Schmidt B, Huster KM et al (2007) Reversible HLA multimers (streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods 320:119–131CrossRefPubMedGoogle Scholar
  15. 15.
    Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96CrossRefPubMedGoogle Scholar
  16. 16.
    Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T-cell responses. Annu Rev Immunol 18:561–592CrossRefPubMedGoogle Scholar
  17. 17.
    Wooldridge L, Lissina A, Cole D et al (2009) Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126:147–164CrossRefPubMedGoogle Scholar
  18. 18.
    Junttila MR, Saarinen S, Schmidt T et al (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203CrossRefPubMedGoogle Scholar
  19. 19.
    Newell EW, Klein LO, Yu W, Davis MM (2009) Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods 6:497–499CrossRefPubMedGoogle Scholar
  20. 20.
    Hadrup SR, Bakker AH, Shu CJ et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526CrossRefPubMedGoogle Scholar
  21. 21.
    Hardrup SR, Toebes M, Rodenko B et al (2009) High-throughput T-cell epitope discovery through MHC peptide exchange. Methods Mol Biol 524:383–405CrossRefGoogle Scholar
  22. 22.
    Bakker AH, Hoppes R, Linnemann C et al (2008) Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci USA 105:3825–3830CrossRefPubMedGoogle Scholar
  23. 23.
    Barnes E, Ward SM, Kasprowicz VO et al (2004) Ultra-sensitive class I tetramer analysis reveals previously undetectable populations of antiviral CD8+ T cells. Eur J Immunol 34:1570–1577CrossRefPubMedGoogle Scholar
  24. 24.
    Harcourt GC, Scriba TJ, Semmo N et al (2006) Identification of key peptide-specific CD4+ T cell responses to human cytomegalovirus: implications for tracking antiviral populations. Clin Exp Immunol 146:203–210CrossRefPubMedGoogle Scholar
  25. 25.
    Scriba TJ, Purbhoo M, Day CL et al (2005) Ultrasensitive detection and phenotyping of CD4+ T cells with optimized HLA class II tetramer staining. J Immunol 175:6334–6343PubMedGoogle Scholar
  26. 26.
    Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al (2008) High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 113:2238–2244CrossRefPubMedGoogle Scholar
  27. 27.
    Bouquié R, Bonnin A, Bernardeau K et al (2009) A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor-specific T lymphocytes. Cancer Immunol Immunother 58:553–566CrossRefPubMedGoogle Scholar
  28. 28.
    Greten TF, Slansky JE, Kubota R et al (1998) Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA 95:7568–7573CrossRefPubMedGoogle Scholar
  29. 29.
    Lee PP, Yee C, Savage PA et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med 5:677–685CrossRefPubMedGoogle Scholar
  30. 30.
    Busch DH, Pamer EG (1998) MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160:4441–4448PubMedGoogle Scholar
  31. 31.
    Keenan RD, Ainsworth J, Khan N et al (2001) Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol 115:428–434CrossRefPubMedGoogle Scholar
  32. 32.
    Appay V, Nixon DF, Donahoe SM et al (2000) HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75CrossRefPubMedGoogle Scholar
  33. 33.
    Choi EM, Chen JL, Wooldridge L et al (2003) High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J Immunol 171:5116–5123PubMedGoogle Scholar
  34. 34.
    Oelke M, Maus MV, Didiano D et al (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–624CrossRefPubMedGoogle Scholar
  35. 35.
    Rauser G, Einsele H, Sinzger C et al (2003) Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into allogeneic stem cell transplant recipients. Blood 103:3565–3572CrossRefPubMedGoogle Scholar
  36. 36.
    Widmann T, Sester U, Gartner BC et al (2008) Levels of CMV-specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation. PLoS One 3:1–9CrossRefGoogle Scholar
  37. 37.
    Savage PA, Boniface JJ, Davis MM (1999) A kinetic basis for T-cell receptor repertoire selection during an immune response. Immunity 10:485–492CrossRefPubMedGoogle Scholar
  38. 38.
    Britten CM, Gouttefangeas C, Welters MJ et al (2008) The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8(+) T lymphocytes by structural and functional assays. Cancer Immunol Immunother 57:258–285Google Scholar
  39. 39.
    Britten CM, Janetzki S, Ben-Porat L et al (2009) Harmonization guidelines for HLA-peptide multimer assays derived from results of a large-scale international proficiency panel of the Cancer Vaccine Consortium. Cancer Immunol Immunother 58:1701–1713CrossRefPubMedGoogle Scholar
  40. 40.
    Sun MY, Bowness P (2001) MHC class I multimers. Arthritis Res 3:265–269CrossRefPubMedGoogle Scholar
  41. 41.
    Yao J, Bechter C, Wiesneth M et al (2008) Multimer staining of CMVpp65-specific T cells for diagnosis and therapeutic purpose—a comparative study. Clin Infect Dis 46:96–105CrossRefGoogle Scholar
  42. 42.
    Casares S, Hurtado A, McEvoy RC et al (2002) Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. Nat Immunol 3:383–391CrossRefPubMedGoogle Scholar
  43. 43.
    Reijonen H, Novak EJ, Kochik S et al (2002) Detection of GAD65-specific T cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 51:1375–1382CrossRefPubMedGoogle Scholar
  44. 44.
    Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMedGoogle Scholar
  45. 45.
    Marmont AM, Horowitz MM, Gale RP et al (1991) T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–2130PubMedGoogle Scholar
  46. 46.
    Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112:4371–4383CrossRefPubMedGoogle Scholar
  47. 47.
    Kolb HJ, Schattenberg A, Goldman JM et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86:2041–2050PubMedGoogle Scholar
  48. 48.
    Viola A, Lanzavecchia A (1996) T-cell activation determined by T-cell receptor number and tunable thresholds. Science 273:104–106CrossRefPubMedGoogle Scholar
  49. 49.
    Sykulev Y, Joo M, Vturina I et al (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T-cell response. Immunity 4:565–571CrossRefPubMedGoogle Scholar
  50. 50.
    Roback JD (2006) Vaccine-enhanced donor lymphocyte infusion. Hematology 486–491Google Scholar
  51. 51.
    Boeckh M, Nichols WG, Papanicolaou G et al (2003) Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant 9:543–558CrossRefPubMedGoogle Scholar
  52. 52.
    Langston AA, Redei I, Caliendo AM et al (2002) Development of drug-resistant herpes simplex virus infection after haploidentical hematopoietic progenitor cell transplantation. Blood 99:1085–1088CrossRefPubMedGoogle Scholar
  53. 53.
    Levy RB, Jones M, Cray C (1990) HSV-1 enhances GvHR-associated parent anti-F1 alloreactivity in vivo and in vitro. Cell Immunol 129:1–12CrossRefPubMedGoogle Scholar
  54. 54.
    Boeckh M, Leisenring W, Riddell SR et al (2003) Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 101:407–414CrossRefPubMedGoogle Scholar
  55. 55.
    Kolb HJ, Schmid A, Barret AJ, Schendel DJ (2004) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103:767–776CrossRefPubMedGoogle Scholar
  56. 56.
    Riddell SR, Watanabe KS, Goodrich JM et al (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 257:238–241CrossRefPubMedGoogle Scholar
  57. 57.
    Tiberghien P, Ferrand C, Lioure B et al (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97:63–72CrossRefPubMedGoogle Scholar
  58. 58.
    Einsele H, Roosnek E, Rufer N et al (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99:3916–3922CrossRefPubMedGoogle Scholar
  59. 59.
    Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044CrossRefPubMedGoogle Scholar
  60. 60.
    Mandigers CMPW, Verdonck LF, Meijerink JPP et al (2003) Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapse after allogeneic stem cell transplantation. Bone Marrow Transplant 32:1159–1163CrossRefPubMedGoogle Scholar
  61. 61.
    Mackinnon S, Papadopoulos EB, Carabasi MH et al (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86:1261–1268PubMedGoogle Scholar
  62. 62.
    Bonini C, Ferrari G, Verzelletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 276:1719–1724CrossRefPubMedGoogle Scholar
  63. 63.
    Thomis DC, Marktel S, Bonini C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257CrossRefPubMedGoogle Scholar
  64. 64.
    Molldrem JJ, Lee PP, Wang C et al (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023CrossRefPubMedGoogle Scholar
  65. 65.
    Wang X, Schmitt A, Germeroth L et al (2009) Generation of leukemia antigen-specific donor lymphocyte infusions powered by streptamer-based selection. Bone Marrow Transplant 43:S73Google Scholar
  66. 66.
    Schmitt A, Tonn T, Busch DH et al (2009) Adoptive transfer and consequential selective reconstitution of streptamers-selected cytomegalovirus-specific CD8+ T cells leads to enduring virus clearance in patients after allogeneic stem cell transplantation. Bone Marrow Transplant 43:S246Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Rosaely Casalegno-Garduño
    • 1
  • Anita Schmitt
    • 1
  • Junxia Yao
    • 2
  • Xinchao Wang
    • 1
    • 3
  • Xun Xu
    • 1
    • 4
  • Mathias Freund
    • 1
  • Michael Schmitt
    • 1
  1. 1.Department of Internal Medicine III, Clinical Stem Cell Transplantation and ImmunotherapyUniversity Clinic RostockRostockGermany
  2. 2.Center for Stem Cell Research and Application, Institute of Hematology, Union HospitalHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Oncology and HematologyZhongda Hospital, Southeast UniversityNanjingChina
  4. 4.Department of ImmunologyJiangsu UniversityZhenjiangChina

Personalised recommendations