Skip to main content

Advertisement

Log in

The importance of the age factor in cancer vaccination at older age

  • Symposium in Writing
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer is an age-related disease, and with the graying of the society there is an increasing need to optimize cancer management and therapy to elderly patients. Vaccine therapy for cancer is less toxic than chemotherapy or radiation and could be, therefore, especially effective in older, more frail cancer patients. However, it has been shown that older individuals do not respond to vaccine therapy as well as younger adults. This has been attributed to T cell unresponsiveness, a phenomenon also observed in cancer patients per se. Therefore, research is needed to establish whether age-specific tumor-immunological variables permit optimal use of cancer vaccines and therapy in the elderly. This review summarizes the current knowledge of T cell unresponsiveness in cancer patients and elderly, and the results of cancer vaccination in preclinical models at young and old age. Finally, new directions that may lead to effective cancer vaccination at older age will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gravekamp C, Bontenbal M, Ronteltap C et al (1990) In vitro and in vivo activation of CD4+ lymphocytes by autologous tumor cells. Int J Cancer 46:152–154

    Article  Google Scholar 

  2. Schreiber H (1998) Tumor immunology. In: Paul W (ed) Fundamental immunology, 4th edn. Lippencott-Raven, Philadelphia, pp 1237–1270

    Google Scholar 

  3. Gravekamp C (2001) Tailoring cancer vaccines to the elderly: the importance of suitable mouse models. MAD 122:1087–1105

    Article  CAS  Google Scholar 

  4. Koyama S, Maruyama T, Adachi S et al (1998) Expression of costimulatory molecules, B7-1 and B7-2 on human gastric carcinoma. J Can Res Clin Oncol 124:383–388

    Article  CAS  Google Scholar 

  5. Maurer CA, Friess H, Kretschmann B et al (1998) Over-expression of ICAM-1, VCAM-1 and ELAM-1 might influence tumor progression in colorectal cancer. Int J Cancer 79:76–81

    Article  PubMed  CAS  Google Scholar 

  6. Loo DT, Chalupny NJ, Bajorath J et al (1997) Analysis of 4-IBBL and laminin binding to murine 4-IBB, a member of the tumor necrosis factor receptor superfamily, and comparison with human 4-IBB. J Biol Chem 272:6448–6456

    Article  PubMed  CAS  Google Scholar 

  7. Melero I, Shuford WW, Newby SA et al (1997) Monoclonal antibodies against the 4-IBB T cell activation molecule eradicate established tumors. Nat Med 3:682–685

    Article  PubMed  CAS  Google Scholar 

  8. Garrido F, Ruiz-Cabello F, Cabrera T et al (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  PubMed  CAS  Google Scholar 

  9. Akbasak A, Oldfield EH, Saris SC (1991) Expression and modulation of major histocompatibility antigens on murine brain tumors in vitro. J Neurosurg 75:922–929

    Article  PubMed  CAS  Google Scholar 

  10. Pedrinaci S, Algarra I, Garcia LA et al (1999) Selective upregulation of MHC class I expression in metastatic colonies derived from tumor clones of a murine fibrosarcoma. Int J Clin Lab Res 29:166–173

    Article  PubMed  CAS  Google Scholar 

  11. Weber JS, Rosenberg SA (1990) Effects of murine tumor class I major histocompatibility complex expression on anti-tumor activity of tumor-infiltrating lymphocytes. J Natl Cancer Inst 82:755–761

    Article  PubMed  CAS  Google Scholar 

  12. Blieden TM, McAdam AJ, Foresman MD (1991) Class-I MHC expression in the mouse lung carcinoma, line 1: a model for class-I inducible tumors. Int J Cancer Suppl 6:82–89

    Article  PubMed  CAS  Google Scholar 

  13. Corver WE, Koopman LA, van der Aa J et al (2000) Four-color multiparameter DNA flow cytometry to study phenotypic intratumor heterogeneity in cervical cancer. Cytometry 39:96–107

    Article  PubMed  CAS  Google Scholar 

  14. Sypniewska RK, Hoflack L, Tarango M, Gauntt S, Leal BZ, Reddick RL, Gravekamp C (2005) Prevention of metastases with Mage-b vaccine in a mouse breast tumor model: potential for breast cancer therapy. Breast Cancer Res Treat 91:19–28

    Article  PubMed  CAS  Google Scholar 

  15. Zou W (2006) Regulatory T cell, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  16. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Investig 117:1167–1174

    Article  PubMed  CAS  Google Scholar 

  17. Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    Article  PubMed  CAS  Google Scholar 

  18. Shimizu J, Yamzaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD4+CD25+ T cells: a common basis between tumor immunityand autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  19. Tanaka H, Tanaka J, Kjaergaard J et al (2002) Depletion of CD4+CD25+ regulatory T cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25:207–217

    Article  PubMed  CAS  Google Scholar 

  20. Chen A, Liu S, Park D et al (2007) Depleting intratumoral CD4+CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adaptive T cell transfer. Cancer Res 67:1291–1298

    Article  PubMed  CAS  Google Scholar 

  21. Mahnke K, Schonfeld K, Fondel S et al (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120:2723–2733

    Article  PubMed  CAS  Google Scholar 

  22. Van Elsas A, Hurwitz AA, Allison P (1999) Combination of immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-1) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 3:355–366

    Article  Google Scholar 

  23. Maker AV, Attia P, Rosenberg SA (2005) Analysis of the cellular mechanism of anti-tumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175:7746–7754

    PubMed  CAS  Google Scholar 

  24. Gavin MA et al (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nat 445:771–775

    Article  CAS  Google Scholar 

  25. Wan YY, Flavel RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766–770

    Article  PubMed  CAS  Google Scholar 

  26. Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells express IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  27. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in tumor microenvironment. J Immunother 29:233–240

    Article  PubMed  CAS  Google Scholar 

  28. Kobie JJ, Wu RS, Kurt RA et al (2003) Transforming growth factor beta inhibits the antigen-presenting functions and anti-tumor activity of dendritic cell vaccines. Cancer Res 63:1860–1864

    PubMed  CAS  Google Scholar 

  29. Chen ML, Pittet MJ, Gorelik L et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. PNAS 102:419–424

    Article  PubMed  CAS  Google Scholar 

  30. Park SJ, Nakagawa T, Kitamura H et al (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844–3854

    PubMed  CAS  Google Scholar 

  31. Jonuleit H, Schmitt E, Steinbrink K et al (2001) Dendritic cells as a tool to induce anergic and regulatory T-cells. Trends Immunol 22:394–400

    Article  PubMed  CAS  Google Scholar 

  32. Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B et al (2005) Tumor cyclooxygenase-2/prostaglandine E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220

    Article  PubMed  CAS  Google Scholar 

  33. Kuroda E, Yamashita U (2003) Mechanisms of enhanced macrophage-mediated prostaglandine E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J Immunol 170:757–764

    PubMed  CAS  Google Scholar 

  34. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 7:1027–1034

    Article  Google Scholar 

  35. Hwu P, Du MX, Lapointe R et al (2000) Indolamine 2, 3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    PubMed  CAS  Google Scholar 

  36. Kim R, Manabu E, Tanabe E et al (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536

    Article  PubMed  CAS  Google Scholar 

  37. Sica A, Saccani A, Bottazzi B et al (2000) Autocrine production of IL-10 mediates defective IL-12 production and NFk-B activation in tumor-associated macrophages. J Immunol 164:762–767

    PubMed  CAS  Google Scholar 

  38. Starace D, Riccioli A, D’Alessio A et al (2004) Characterization of signaling pathways leading to Fas expression induced by TNFα: pivotal role of NF-κB. FASEB 19:473–475

    Google Scholar 

  39. Shi W, Li L, Shi X et al (2006) Inhibition of nuclear factor-kB activation is essential for membrane-associated TNF-alpha-induced apoptosis in HL-60 cells. Immunol Cell Biol 84:366–373

    Article  PubMed  CAS  Google Scholar 

  40. Baron-Bodo V, Doceur P, Levebre ML et al (2005) Anti-tumor properties of human-activated macrophages produced in large scale for clinical application. Immunobiolog 210:267–277

    Article  CAS  Google Scholar 

  41. Ouyang GF, Saio M, Suwa T et al (2006) Interleukin-2 augmented activation of tumor-associated macrophage plays the main role in MHC class I in vivo induction in tumor cells that are MHC negative in vitro. Int J Oncol 28:1201–1208

    PubMed  CAS  Google Scholar 

  42. Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74

    Article  PubMed  CAS  Google Scholar 

  43. Utsuyama M, Hirokawa K, Kurashima C et al (1992) Differential age-change in the number of CD4+CD45RA+ and CD4+CD29+ T cell subsets in human peripheral blood. Mech Ageing Dev 63:57–68

    Article  PubMed  CAS  Google Scholar 

  44. Grubeck-Loebenstein B (1997) Changes in the aging immune system. Biologicals 25:205–208

    Article  PubMed  CAS  Google Scholar 

  45. George AJT, Ritter MA (1996) Thymic involution with ageing: obsolescence or good houskeeping? Immunol Today 17:267–272

    Article  PubMed  CAS  Google Scholar 

  46. Tamir A, Eisenbraun MD, Garcia GG et al (2000) Age-dependent alterations in the assembly of signal transduction complexes at the site of T cell/APC interaction. J Immunol 165:1243–1251

    PubMed  CAS  Google Scholar 

  47. Wack A, Cossarizza A, Heltai S et al (1998) Age-related modifications of the human alphabeta T cell repertoire due to different clonal expansions in the CD4+ and CD8+ subsets. Int Immunol 10:1281–1288

    Article  PubMed  CAS  Google Scholar 

  48. Effros RB (2006) Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 7:599–604

    Google Scholar 

  49. Effros RB (2004) Replicative senescence of CD8 T cells: effect on human aging. Exp Ger 39:517–524

    Article  CAS  Google Scholar 

  50. Filaci G, Fravega M, Negrini S et al (2004) Nonantigen-specific CD8+ suppressor lymphocytes originate from CD8+CD28- T cells and inhibit both T cell proliferation and CTL function. Hum Immunol 65:142–156

    Article  PubMed  CAS  Google Scholar 

  51. Nishioka T, Shimizu J, Yamazaki S et al (2006) CD4+CD25+Fox3+ T cells and CD4+CD25-Fox3+ T cells in aged mice. J Immunol 176:6586–6593

    PubMed  CAS  Google Scholar 

  52. Gregg R, Smith CM, Clark FJ et al (2005) The number of human peripheral blood CD4+CD25 high regulatory T cells increases with age. Clin Exp Immunol 140:540–546

    Article  PubMed  CAS  Google Scholar 

  53. McElhaney JE, Meneilly GS, Lechelt KE et al (1994) Split-virus influenza vaccines: do they provide adequate immunity in the elderly? Gerontol 49:M37–M43

    CAS  Google Scholar 

  54. Quyang Q, Cicek G, Westendorp RGJ et al (2000) Reduced IFNγ production in elderly people following in vitro stimulation with influenza vaccine and endotoxin. Mech Ageing Dev 121:131–137

    Google Scholar 

  55. Lung TL, Sauerwein-Teissl M, Parson W et al (2000) Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 18:1606–1612

    Article  PubMed  CAS  Google Scholar 

  56. Sauerwein-Teissl M, Schonitzer D, Grubeck-Loebenstin B (1998) Dendritic cell responsiveness to stimulation with influenza vaccine is unimpaired in old age. Exp Ger 33:625–631

    Article  Google Scholar 

  57. Sprecher E, Becker Y, Kraal G et al (1990) Effect of aging on the epidermal dendritic cell population in C57Bl/6J mice. J Invest Dermatol 94:247–253

    Article  PubMed  CAS  Google Scholar 

  58. Sunderkotter C, Laden H, Luger TA (1997) Aging and the skin immune system. Arch Dermatolog 133:1256–1262

    Article  CAS  Google Scholar 

  59. Bella D, Bierti L, Presicce P et al (2007) Peripheral blood dendritic cells and monocytes are differentially regulated in the elderly. Clin Immunol 122:220–228

    Article  PubMed  CAS  Google Scholar 

  60. Agrawal A, Agrawal S, Cao JN et al (2007) Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinisitide 3-kinase-signaling pathway. J Immunol 178:6912–6922

    PubMed  CAS  Google Scholar 

  61. Renshaw M, Rocjwell J, Engleman C et al (2002) Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 169:4697–4701

    PubMed  CAS  Google Scholar 

  62. Muss HB (2001) Factors used to select adjuvant therapy of breast cancer in the United States: an overview of age, race, and socioeconomic status. J Natl Cancer Inst Monogram 30:52–55

    Google Scholar 

  63. Provinciali M, Argentati K, Tibaldi A (2000) Efficacy of cancer gene therapy in aging: adenocarcinoma cells engineered to release IL-2 are rejected but do not induce tumor specific immune memory in old mice. Gene Ther 7:624–632

    Article  PubMed  CAS  Google Scholar 

  64. Provinciali M, Smorlesi A, Donnini A et al (2003) Low effectiveness of DNA vaccination against HER2/neu in aging. Vaccine 21:843–848

    Article  PubMed  CAS  Google Scholar 

  65. Lustgarten J, Dominguez AL, Thomas M (2004) Aged mice develop protective anti-tumor responses with appropriate costimulation. J Immunol 173:4510–4515

    PubMed  CAS  Google Scholar 

  66. Sharma S, Domiguez AL, Lustgarten J (2006) Aging affect the anti-tumor potential of dendritic cell vaccination, but it can be overcome by co-stimulation with anti-OX40 or anti-4-1BB. Exp Ger 41:78–84

    Article  CAS  Google Scholar 

  67. Grolleau-Julius A, Abernathy L, Harning E, Yung RL (2008) Mechanisms of murine dendritic cell antitumor dysfunction in aging. Cancer Immunol Immunother. doi: 10.1007/s00262-008-0636-9

  68. Gravekamp C, Sypniewska R, Gauntt S, Tarango M, Price P, Reddick R (2004) Behaviour of metastatic and non-metastatic tumors in old mice. Exp Biol Med 229:665–675

    CAS  Google Scholar 

  69. Gravekamp C, Leal B, Denny A, Bahar R, Lampkin S, Castro F, Moore D, Reddick R (2008) In vivo responses to vaccination with Mage-b, GM-CSF and thioglycollate in a highly metastatic mouse breast tumor model, 4T1. Cancer Immunology and Immunotherapy. Cancer Immunol Immunother 57:1067–1077

    Article  PubMed  CAS  Google Scholar 

  70. Gravekamp C (2007) Cancer vaccines in old age. Exp Gerontol 42:441–450

    Article  PubMed  CAS  Google Scholar 

  71. Gravekamp C, Kim SH, Castro F (2008). Cancer vaccination: manipulation of immune responses at old age. Mech Ageing Dev (in press)

  72. Stacy S, Infante AJ, Wall K et al (2003) Recall immune memory: a new tool for generating late onset autoimmune myasthenia gravis. Mech Ageing Dev 124:931–940

    Article  PubMed  CAS  Google Scholar 

  73. Tan JT, Dudl E, LeRoy E et al (2001) IL-7 is critical for homeostatic proliferation and survival of naïve T cells. PNAS 98:8732–8737

    Article  PubMed  CAS  Google Scholar 

  74. Nardin A, Levebre ML, Labroquere K et al (2006) Liposomal muramyl tripeptide phosphatidylethanolamine: targeting and activating macrophages for adjuvant treatment of osteosarcoma. Curr Cancer Drug Targets 6:123–133

    Article  PubMed  CAS  Google Scholar 

  75. Kim SH, Castro F, Gonzalez D, Maciag P, Paterson Y, Gravekamp C (2008) Mage-b delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. Br J Cancer 99:741–749

    Article  PubMed  CAS  Google Scholar 

  76. Fest S, Heubener N, Weixler S et al (2006) Characterization of GD2 peptide miotope DNA vaccines effective against spontaneous neuroblastoma metastases. Cancer Res 66:10567–10575

    Article  PubMed  CAS  Google Scholar 

  77. DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF (1998) Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol 185:65–74

    Article  PubMed  CAS  Google Scholar 

  78. Niethammer AG, Xiang R, Becker JC et al (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  79. Fang L, Lonsdorf AS, Hwang ST (2008) Immunotherapy for advanced melanoma. J Invest Dermatol 128:2596–2605

    Article  PubMed  CAS  Google Scholar 

  80. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immuno therapy: moving beyond current vaccines. Nature Med 10:999–1015

    Article  CAS  Google Scholar 

  81. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principle of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIA grant 1RO1 AG023096-01, the American Federation for Aging Research (AFAR) A000106, and NCI grant 1R21CA129470-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Gravekamp.

Additional information

This article is part of the Symposium in Writing on “Impact of Ageing on Cancer Immunity and Immunotherapy”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravekamp, C. The importance of the age factor in cancer vaccination at older age. Cancer Immunol Immunother 58, 1969–1977 (2009). https://doi.org/10.1007/s00262-009-0683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0683-x

Keywords

Navigation