Skip to main content

Advertisement

Log in

Human CD80/IL2 lentivirus transduced acute myeloid leukaemia cells enhance cytolytic activity in vitro in spite of an increase in regulatory CD4+ T cells in a subset of cultures

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapeutic strategies are increasingly being explored as a method of enhancing anti-tumour immune responses in patients with acute myeloid leukaemia (AML). Regulatory CD4+ T cells (Tregs) suppress effector T and natural killer (NK) cells and therefore pose a potential challenge to the efficacy of immunotherapy. AML cells transduced with a lentivirus expressing CD80 (B7.1) and IL2 (LV-CD80/IL2) are capable of stimulating T and NK cell cytotoxicity in vitro. This study examines the effect of CD80/IL2 modified AML cells on Treg number and function. We report a significant increase in the number of CD8+ T cells (P = 0.046) CD3CD56+ NK cells (P = 0.028) and CD3+CD4+CD25highFoxp3+ Tregs (P = 0.043) following stimulation for 7 days with allogeneic LV-CD80/IL2 AMLs. In contrast, autologous LV-CD80/IL2 AML cell cultures provide a weaker stimulation with a lower number of CD8+ T cells (P = 0.011) and no change in NK cell or Treg numbers. However, an increase in cytotoxic CD8+ T cells and NK cells are detected following both allogeneic and autologous LV-CD80/IL2 stimulation as demonstrated by an increase in IFN-γ and CD107a expression. Despite the presence of increased numbers of Tregs with suppressive activity in a subset of cultures, increased lysis of unmodified AMLs was still achieved following allogeneic (day 0, 2.2%; day 7, 20.4%) and more importantly, autologous LV-CD80/IL2 culture in which AML patients had recently received intensive chemotherapy (day 0, 0%; day 7, 16%). Vaccination with LV-CD80/IL2 therefore provides a potential strategy to enhance anti-leukaemia immune responses without a concomitant stimulation of Treg-mediated inhibition of cytotoxic immunological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piccirillo CA, Shevach EM (2001) Cutting edge: control of CD8+ T cell activation by CD4+ CD25+ immunoregulatory cells. J Immunol 167:1137–1140

    PubMed  CAS  Google Scholar 

  2. Piccirillo CA, Shevach EM (2004) Naturally-occurring CD4+ CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 16:81–88

    Article  PubMed  CAS  Google Scholar 

  3. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32

    Article  PubMed  CAS  Google Scholar 

  4. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  5. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  6. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  7. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, Vickers MA (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103:1755–1762

    Article  PubMed  CAS  Google Scholar 

  8. Motta M, Rassenti L, Shelvin BJ, Lerner S, Kipps TJ, Keating MJ, Wierda WG (2005) Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia 19:1788–1793

    Article  PubMed  CAS  Google Scholar 

  9. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+ CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107:3639–3646

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Zheng J, Liu J, Yao J, He Y, Li X, Yu J, Yang J, Liu Z, Huang S (2005) Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 75:468–476

    Article  PubMed  Google Scholar 

  11. Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, Allam CK, Daley JF, Chauhan D, Blanchard E, Thatte HS, Anderson KC, Munshi NC (2006) Dysfunctional T regulatory cells in multiple myeloma. Blood 107:301–304

    Article  PubMed  CAS  Google Scholar 

  12. Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B, Lombardi G, Wlodarski MW, Maciejewski JP, Farzaneh F, Mufti GJ (2007) CD4+ CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110:847–850

    Article  PubMed  CAS  Google Scholar 

  13. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  14. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A (2002) Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32:3267–3275

    Article  PubMed  CAS  Google Scholar 

  15. Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M, Nishigori C, Ichihashi M (2004) In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 13:613–620

    Article  PubMed  CAS  Google Scholar 

  16. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  17. Jaffe ES, Harris NL, Stein H, Vardiman JW (2001) World Health Organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

  18. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1, 612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92:2322–2333

    PubMed  CAS  Google Scholar 

  19. Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ, Rees JK, Stevens RF, Walker H (1999) A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol 107:69–79

    Article  PubMed  CAS  Google Scholar 

  20. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE (2001) Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood 98:1302–1311

    Article  PubMed  CAS  Google Scholar 

  21. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR (2000) Karyotypic analysis predicts outcome of pre-remission and post-remission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083

    PubMed  CAS  Google Scholar 

  22. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, Wheatley K, Burnett AK, Goldstone AH (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98:1312–1320

    Article  PubMed  CAS  Google Scholar 

  23. Whiteway A, Corbett T, Anderson R, Macdonald I, Prentice HG (2003) Expression of co-stimulatory molecules on acute myeloid leukaemia blasts may effect duration of first remission. Br J Haematol 120:442–451

    Article  PubMed  CAS  Google Scholar 

  24. Gaken JA, Hollingsworth SJ, Hirst WJ, Buggins AG, Galea-Lauri J, Peakman M, Kuiper M, Patel P, Towner P, Patel PM, Collins MK, Mufti GJ, Farzaneh F, Darling DC (1997) Irradiated NC adenocarcinoma cells transduced with both B7.1 and interleukin-2 induce CD4+ -mediated rejection of established tumors. Hum Gene Ther 8:477–488

    Article  PubMed  CAS  Google Scholar 

  25. Emtage PC, Wan Y, Bramson JL, Graham FL, Gauldie J (1998) A double recombinant adenovirus expressing the costimulatory molecule B7-1 (murine) and human IL-2 induces complete tumor regression in a murine breast adenocarcinoma model. J Immunol 160:2531–2538

    PubMed  CAS  Google Scholar 

  26. Stripecke R, Cardoso AA, Pepper KA, Skelton DC, Yu XJ, Mascarenhas L, Weinberg KI, Nadler LM, Kohn DB (2000) Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage- colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood 96:1317–1326

    PubMed  CAS  Google Scholar 

  27. Chan L, Hardwick N, Darling D, Galea-Lauri J, Gaken J, Devereux S, Kemeny M, Mufti G, Farzaneh F (2005) IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther 11:120–131

    Article  PubMed  CAS  Google Scholar 

  28. Taylor PA, Lees CJ, Fournier S, Allison JP, Sharpe AH, Blazar BR (2004) B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T–T interactions [corrections]. J Immunol 172:34–39

    PubMed  CAS  Google Scholar 

  29. Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM (2004) CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 172:2778–2784

    PubMed  CAS  Google Scholar 

  30. Golovina TN, Mikheeva T, Suhoski MM, Aqui NA, Tai VC, Shan X, Liu R, Balcarcel RR, Fisher N, Levine BL, Carroll RG, Warner N, Blazar BR, June CH, Riley JL (2008) CD28 costimulation is essential for human T regulatory expansion and function. J Immunol 181:2855–2868

    PubMed  CAS  Google Scholar 

  31. Sansom DM, Walker LS (2006) The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 212:131–148

    Article  PubMed  CAS  Google Scholar 

  32. Bruserud O, Gjertsen BT, von Volkman HL (2000) In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 9:923–932

    Article  PubMed  CAS  Google Scholar 

  33. Bruserud O, Frostad S, Foss B (1999) In vitro culture of acute myelogenous leukemia blasts: a comparison of four different culture media. J Hematother 8:63–73

    Article  PubMed  CAS  Google Scholar 

  34. Vereecque R, Saudemont A, Wickham TJ, Gonzalez R, Hetuin D, Fenaux P, Quesnel B (2003) Gamma-irradiation enhances transgene expression in leukemic cells. Gene Ther 10:227–233

    Article  PubMed  CAS  Google Scholar 

  35. Bruserud O, Ulvestad E (1999) Effects of gamma-irradiation on acute myelogenous leukemia blasts: in vitro studies of proliferation, constitutive cytokine secretion, and accessory cell function during T cell activation. J Hematother Stem Cell Res 8:431–441

    Article  PubMed  CAS  Google Scholar 

  36. Bruserud O, Tore Gjertsen B, Brustugun OT, Bassoe CF, Nesthus I, Espen Akselsen P, Buhring HJ, Pawelec G (1995) Effects of interleukin 10 on blast cells derived from patients with acute myelogenous leukemia. Leukemia 9:1910–1920

    PubMed  CAS  Google Scholar 

  37. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, Elferink BG, van der Zanden L, de Vries RR, Huizinga TW, Ottenhoff TH, Toes RE (2005) Expression of FOXP3 mRNA is not confined to CD4+ CD25+ T regulatory cells in humans. Hum Immunol 66:13–20

    Article  PubMed  CAS  Google Scholar 

  38. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+ CD25− T cells. J Clin Invest 112:1437–1443

    PubMed  CAS  Google Scholar 

  39. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37:129–138

    Article  PubMed  CAS  Google Scholar 

  40. Koenen HJ, Fasse E, Joosten I (2005) CD27/CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. J Immunol 174:7573–7583

    PubMed  CAS  Google Scholar 

  41. Ruprecht CR, Gattorno M, Ferlito F, Gregorio A, Martini A, Lanzavecchia A, Sallusto F (2005) Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J Exp Med 201:1793–1803

    Article  PubMed  CAS  Google Scholar 

  42. Duggleby RC, Shaw TN, Jarvis LB, Kaur G, Gaston JS (2007) CD27 expression discriminates between regulatory and non-regulatory cells after expansion of human peripheral blood CD4+ CD25+ cells. Immunology 121:129–139

    Article  PubMed  CAS  Google Scholar 

  43. Bui JD, Uppaluri R, Hsieh CS, Schreiber RD (2006) Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 66:7301–7309

    Article  PubMed  CAS  Google Scholar 

  44. Koya RC, Kasahara N, Pullarkat V, Levine AM, Stripecke R (2002) Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16:1645–1654

    Article  PubMed  CAS  Google Scholar 

  45. Biagi E, Bambacioni F, Gaipa G, Casati C, Golay J, Biondi A, Introna M (2001) Efficient lentiviral transduction of primary human acute myelogenous and lymphoblastic leukemia cells. Haematologica 86:13–16

    PubMed  CAS  Google Scholar 

  46. Stripecke R, Koya RC, Ta HQ, Kasahara N, Levine AM (2003) The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors. Blood Cells Mol Dis 31:28–37

    Article  PubMed  CAS  Google Scholar 

  47. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

  48. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  49. Almeida AR, Legrand N, Papiernik M, Freitas AA (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 169:4850–4860

    PubMed  Google Scholar 

  50. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857

    Article  PubMed  CAS  Google Scholar 

  51. Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414

    Article  PubMed  CAS  Google Scholar 

  52. Levings MK, Sangregorio R, Roncarolo MG (2001) Human CD25(+)CD4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193:1295–1302

    Article  PubMed  CAS  Google Scholar 

  53. Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT (2003) CD4+ CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 198:889–901

    Article  PubMed  CAS  Google Scholar 

  54. Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520

    PubMed  CAS  Google Scholar 

  55. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O, Capron C, Vainchencker W, Martin F, Zitvogel L (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  PubMed  CAS  Google Scholar 

  56. Olsnes AM, Motorin D, Ryningen A, Zaritskey AY, Bruserud O (2006) T lymphocyte chemotactic chemokines in acute myelogenous leukemia (AML): local release by native human AML blasts and systemic levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol Immunother 55:830–840

    Article  PubMed  CAS  Google Scholar 

  57. Olsnes AM, Ryningen A, Ersvaer E, Bruserud O (2008) In vitro induction of a dendritic cell phenotype in primary human acute myelogenous leukemia (AML) blasts alters the chemokine release profile and increases the levels of T cell chemotactic CCL17 and CCL22. J Interferon Cytokine Res 28:297–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

W. Ingram was supported by the Leukaemia Research Fund and the Biomedical Research Centre, King’s College London. S. Kordasti was supported by Joint Research Committee of King’s College Hospital and King’s College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam J. Mufti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingram, W., Kordasti, S., Chan, L. et al. Human CD80/IL2 lentivirus transduced acute myeloid leukaemia cells enhance cytolytic activity in vitro in spite of an increase in regulatory CD4+ T cells in a subset of cultures. Cancer Immunol Immunother 58, 1679–1690 (2009). https://doi.org/10.1007/s00262-009-0679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0679-6

Keywords

Navigation