Skip to main content

Advertisement

Log in

Secretion of stress protein grp170 promotes immune-mediated inhibition of murine prostate tumor

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

It is well established that certain stress proteins or molecular chaperones are highly efficient in cross-presenting tumor-derived antigens, resulting in a potent antitumor immune response. In this study we demonstrate that genetic modification of weakly immunogenic murine prostate tumor cells (TRAMP-C2) by stable transfection with a secretable form of endoplasmic reticulum resident chaperone grp170 significantly enhances its immunogenicity in vivo. Generation of systemic antitumor immunity is indicated by the growth suppression of distant parental tumors, which is associated with increased tumor infiltration, elevated effector functions of CD8+ T-cells. Immunization with inactivated grp170-secreting C2 cells augments a CD8+ T-cell dependent, tumor-protective effect. Furthermore, infection of C2 tumor cells with a nonreplicating adenoviral vectors encoding secretable grp170 promotes tumor immunogenicity more effectively than plasmid transduction, as shown by the increased production of pro-inflammatory cytokine TNF-α by dendritice cells and enhanced therapeutic efficacy in treating pre-established tumors. Given a repertoire of undefined antigens in prostate tumor, manipulation of cellular compartmentalization of immuno-stimulatory chaperone grp170 to elicit systemic tumor immunity may be used to improve treatment outcomes for prostate cancer when combined with other treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. Sanda MG, Restifo NP, Walsh JC, Kawakami Y, Nelson WG, Pardoll DM, Simons JW (1995) Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 87:280–285

    Article  PubMed  CAS  Google Scholar 

  3. Dranoff G (2002) GM-CSF-based cancer vaccines. Immunol Rev 188:147–154

    Article  PubMed  CAS  Google Scholar 

  4. Simons JW, Carducci MA, Mikhak B, Lim M, Biedrzycki B, Borellini F, Clift SM, Hege KM, Ando DG, Piantadosi S, Mulligan R, Nelson WG (2006) Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res 12:3394–3401

    Article  PubMed  CAS  Google Scholar 

  5. Small EJ, Sacks N, Nemunaitis J, Urba WJ, Dula E, Centeno AS, Nelson WG, Ando D, Howard C, Borellini F, Nguyen M, Hege K, Simons JW (2007) Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res 13:3883–3891

    Article  PubMed  CAS  Google Scholar 

  6. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    PubMed  CAS  Google Scholar 

  7. Calderwood SK, Theriault JR, Gong J (2005) Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 35:2518–2527

    Article  PubMed  CAS  Google Scholar 

  8. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Article  PubMed  CAS  Google Scholar 

  9. Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599

    Article  PubMed  CAS  Google Scholar 

  10. Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166:490–497

    PubMed  CAS  Google Scholar 

  11. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  12. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30:2211–2215

    PubMed  CAS  Google Scholar 

  13. Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C–C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    PubMed  CAS  Google Scholar 

  14. Manjili MH, Park J, Facciponte JG, Wang X-Y, Subjeck JR (2006) Immunoadjuvant chaperone, GRP170, induces “danger signals” upon interaction with dendritic cells. Immmunol Cell Biol 84:203–208

    Article  CAS  Google Scholar 

  15. Park J, Facciponte JG, Chen X, MacDonald IJ, Repasky E, Manjili MH, Wang XY, Subjeck JR (2006) Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Res 66:1161–1168

    Article  PubMed  CAS  Google Scholar 

  16. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM (1997) Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57:3325–3330

    PubMed  CAS  Google Scholar 

  17. Wang XY, Arnouk H, Chen X, Kazim L, Repasky EA, Subjeck JR (2006) Extracellular targeting of endoplasmic reticulum chaperone glucose-regulated protein 170 enhances tumor immunity to a poorly immunogenic melanoma. J Immunol 177:1543–1551

    PubMed  CAS  Google Scholar 

  18. Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR (2003) Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Res 63:2553–2560

    PubMed  CAS  Google Scholar 

  19. Gao P, Sun X, Chen X, Wang Y, Foster BA, Subjeck J, Fisher PB, Wang XY (2008) Secretable chaperone Grp170 enhances therapeutic activity of a novel tumor suppressor, mda-7/IL-24. Cancer Res 68:3890–3898

    Article  PubMed  CAS  Google Scholar 

  20. Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, Hizuta A, Tanaka N, Srivastava PK, Nakayama E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303–1309

    PubMed  CAS  Google Scholar 

  21. Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2 Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28:1016–1021

    Article  PubMed  CAS  Google Scholar 

  22. Grossmann ME, Madden BJ, Gao F, Pang YP, Carpenter JE, McCormick D, Young CY (2004) Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp Cell Res 297:108–117

    Article  PubMed  CAS  Google Scholar 

  23. Kunisawa J, Shastri N (2006) Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24:523–534

    Article  PubMed  CAS  Google Scholar 

  24. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  PubMed  CAS  Google Scholar 

  25. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK, Issels RD (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169:5424–5432

    PubMed  CAS  Google Scholar 

  26. Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino G, Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, Parmiani G (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol 171:3467–3474

    PubMed  CAS  Google Scholar 

  27. Callahan MK, Garg M, Srivastava PK (2008) Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc Natl Acad Sci USA 105:1662–1667

    Article  PubMed  CAS  Google Scholar 

  28. Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R (1996) A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J 15:6931–6942

    PubMed  CAS  Google Scholar 

  29. Spee P, Subjeck J, Neefjes J (1999) Identification of novel peptide binding proteins in the endoplasmic reticulum: ERp72, calnexin, and grp170. Biochemistry 38:10559–10566

    Article  PubMed  CAS  Google Scholar 

  30. Wang XY, Kazim L, Repasky EA, Subjeck JR (2003) Immunization with tumor-derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. Int J Cancer 105:226–231

    Article  PubMed  CAS  Google Scholar 

  31. Facciponte JG, Wang XY, Subjeck JR (2007) Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur J Immunol 37:2268–2279

    Article  PubMed  CAS  Google Scholar 

  32. Todryk SM, Melcher AA, Dalgleish AG, Vile RG (2000) Heat shock proteins refine the danger theory. Immunology 99:334–337

    Article  PubMed  CAS  Google Scholar 

  33. Lukacs KV, Lowrie DB, Stokes RW, Colston MJ (1993) Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 178:343–348

    Article  PubMed  CAS  Google Scholar 

  34. Menoret A, Patry Y, Burg C, Le Pendu J (1995) Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. J Immunol 155:740–747

    PubMed  CAS  Google Scholar 

  35. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4:581–587

    Article  PubMed  CAS  Google Scholar 

  36. Wang XY, Li Y, Manjili MH, Repasky EA, Pardoll DM, Subjeck JR (2002) Hsp110 over-expression increases the immunogenicity of the murine CT26 colon tumor. Cancer Immunol Immunother 51:311–319

    Article  PubMed  CAS  Google Scholar 

  37. Zheng H, Dai J, Stoilova D, Li Z (2001) Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol 167:6731–6735

    PubMed  CAS  Google Scholar 

  38. Chen X, Tao Q, Yu H, Zhang L, Cao X (2002) Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 84:81–87

    Article  PubMed  CAS  Google Scholar 

  39. Yamazaki K, Nguyen T, Podack ER (1999) Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol 163:5178–5182

    PubMed  CAS  Google Scholar 

  40. Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508

    Article  PubMed  CAS  Google Scholar 

  41. Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70 s. Cell Stress Chaperones 5:276–290

    Article  PubMed  CAS  Google Scholar 

  42. Park J, Easton DP, Chen X, MacDonald IJ, Wang XY, Subjeck JR (2003) The chaperoning properties of mouse grp170, a member of the third family of hsp70 related proteins. Biochemistry 42:14893–14902

    Article  PubMed  CAS  Google Scholar 

  43. Moroi Y, Mayhew M, Trcka J, Hoe MH, Takechi Y, Hartl FU, Rothman JE, Houghton AN (2000) Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci USA 97:3485–3490

    Article  PubMed  CAS  Google Scholar 

  44. MacAry PA, Javid B, Floto RA, Smith KG, Oehlmann W, Singh M, Lehner PJ (2004) HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20:95–106

    Article  PubMed  CAS  Google Scholar 

  45. Tobian AA, Canaday DH, Harding CV (2004) Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. J Immunol 173:5130–5137

    PubMed  CAS  Google Scholar 

  46. Wang MH, Grossmann ME, Young CY (2004) Forced expression of heat-shock protein 70 increases the secretion of Hsp70 and provides protection against tumour growth. Br J Cancer 90:926–931

    Article  PubMed  CAS  Google Scholar 

  47. Wang XY, Facciponte JG, Subjeck JR (2006) Molecular chaperones and cancer immunotherapy. Handb Exp Pharmacol 172:305–329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Cancer Institute (NCI) Grant CA121848, CA129111, American Cancer Society Grant RSG-08-187-01-LIB, Roswell Park Alliance Foundation, and NCI Cancer Center Support Grant to the Roswell Park Cancer Institute CA016056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, P., Sun, X., Chen, X. et al. Secretion of stress protein grp170 promotes immune-mediated inhibition of murine prostate tumor. Cancer Immunol Immunother 58, 1319–1328 (2009). https://doi.org/10.1007/s00262-008-0647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0647-6

Keywords

Navigation