Skip to main content

Advertisement

Log in

TGF-alpha as a candidate tumor antigen for renal cell carcinomas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objectives

Patients with renal cell carcinomas (RCC) have few treatment options, underscoring the importance of developing new approaches such as immunotherapy. However, few tumor associated antigens (TAA), which can be targeted by immunotherapy, have been identified for this type of cancer. von Hippel-Lindau clear cell RCC (VHL−/−RCC) are characterized by mutations in the VHL tumor suppressor gene. Loss of VHL function causes the overexpression of transforming growth factor (TGF)-α, leading us to hypothesize that TGF-α could be a potential TAA for immunotherapy of kidney cancer, which was evaluated in this study.

Methods and results

We first confirmed the absent or weak expression of TGF-α in important normal tissues as well as its overexpression in 61% of renal tumors in comparison to autologous normal kidney tissues. In addition, we demonstrated the immunogenicity of TGF-α, by expanding many T cell lines specific for certain TGF-α peptides or the mature TGF-α protein, when presented by major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells. Interestingly, some of these TGF-α-specific T cells were polyfunctionals and secreted IFN-γ, TNF-α and IL-2.

Conclusion

We have shown that TGF-α is a valid candidate TAA, which should allow the development of a targeted immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cells

CCRCC:

Clear cell renal cell carcinoma

CD40-B:

CD40-activated B lymphocytes

EBV-B:

Immortalized B lymphocytes with the Epstein–Barr virus

GM-CSF:

Granulocyte/macrophage-colony stimulating factor

HIF:

Hypoxia inducible factor

HLA:

Human leukocyte antigen

IFN-γ:

Interferon-γ

MHC:

Major histocompatibility complex

PBMC:

Peripheral blood mononuclear cells

TAA:

Tumor-associated antigen

TIL:

Tumor-infiltrating lymphocytes

TGF-α:

Transforming growth factor-α

VHL:

von Hippel-Lindau

References

  1. Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999. CA Can J Clin 49:8–31

    Article  CAS  Google Scholar 

  2. Schrader AJ, Varga Z, Hegele A, Pfoertner S, Olbert P, Hofmann R (2006) Second-line strategies for metastatic renal cell carcinoma: classics and novel approaches. J Can Res Clin Oncol 132:137–149

    Article  CAS  Google Scholar 

  3. Yang JC, Sherry RM, Steinberg SM, Topalian SL, Schwartzentruber DJ, Hwu P, Seipp CA, Rogers-Freezer L, Morton KE, White DE, Liewehr DJ, Merino MJ, Rosenberg SA (2003) Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 21:3127–3132

    Article  PubMed  CAS  Google Scholar 

  4. McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, Kirkwood JM, Gordon MS, Sosman JA, Ernstoff MS, Tretter CPG, Urba WJ, Smith JW, Margolin KA, Mier JW, Gollob JA, Dutcher JP, Atkins MB (2005) Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 23:133–141

    Article  PubMed  CAS  Google Scholar 

  5. Oosterwijk E, Debruyne FMJ, Schalken JA (1995) The use of monoclonal-antibody G250 in the therapy of renal-cell carcinoma. Semin Oncol 22:34–41

    PubMed  CAS  Google Scholar 

  6. Grabmaier K, Vissers JLM, de Weijert MCA, Oosterwijk-Wakka JC, Van Bokhoven A, Brakenhoff RH, Noessner E, Mulders PA, Merkx G, Figdor CG, Adema GJ, Oosterwijk E (2000) Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer 85:865–870

    Article  PubMed  CAS  Google Scholar 

  7. Fischer J, Palmedo G, von Knobloch R, Bugert P, Prayer-Galetti T, Pagano F, Kovacs G (1998) Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene 17:733–739

    Article  PubMed  CAS  Google Scholar 

  8. Hedberg Y, Davoodi E, Roos G, Ljungberg B, Landberg G (1999) Cyclin-D1 expression in human renal-cell carcinoma. Int J Cancer 84:268–272

    Article  PubMed  CAS  Google Scholar 

  9. Oehlrich N, Devitt G, Linnebacher M, Schwitalle Y, Grosskinski S, Stevanovic S, Zoller M (2005) Generation of RAGE-1 and MAGE-9 peptide-specific cytotoxic T-lymphocyte lines for transfer in patients with renal cell carcinoma. Int J Cancer 117:256–264

    Article  PubMed  CAS  Google Scholar 

  10. de Paulsen N, Brychzy A, Fournier MC, Klausner RD, Gnarra JR, Pause A, Lee S (2001) Role of transforming growth factor-alpha in von Hippel-Lindau (VHL)(−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 98(4:)1387–1392

    Google Scholar 

  11. Gunaratnam L, Morley M, Franovic A, de Paulsen N, Mekhail K, Parolin DAE, Nakamura E, Lorimer IAJ, Lee S (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL−/− renal cell carcinoma cells. J Biol Chem 278:44966–44974

    Article  PubMed  CAS  Google Scholar 

  12. Ivan M, Kondo K, Yang HF, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O-2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  13. Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH (2000) Up-regulation of hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19:5435–5443

    Article  PubMed  CAS  Google Scholar 

  14. Bonicalzi ME, Groulx I, de Paulsen N, Lee S (2001) Role of exon 2-encoded beta-domain of the von Hippel-Lindau tumor suppressor protein. J Biol Chem 276:1407–1416

    Article  PubMed  CAS  Google Scholar 

  15. Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, Ratcliffe PJ, Maher ER (2001) Contrasting effects on HIF-1 alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Gen 10:1029–1038

    Article  PubMed  CAS  Google Scholar 

  16. Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, Jurgensen JS, Gruber G, Maxwell PH, Loning SA, Frei U, Maher ER, Grone HJ, Eckardt KU (2001) Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1 alpha in clear cell renal carcinomas. Can Res 61:5215–5222

    CAS  Google Scholar 

  17. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, Gorbunova V, Bay JO, Bodrogi I, Jagiello-Gruszfeld A, Moore N (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111

    Article  PubMed  Google Scholar 

  18. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  19. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  PubMed  CAS  Google Scholar 

  20. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, Wykoff CC, Maher ER, Harris AL, Ratcliffe PJ, Maxwell PH (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1:459–468

    Article  PubMed  CAS  Google Scholar 

  21. Iliopoulos O, Kibel A, Gray S, Kaelin WG (1995) Tumor suppression by the human von Hippel-Lindau gene-product. Nat Med 1:822–826

    Article  PubMed  CAS  Google Scholar 

  22. Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P (2003) CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Can Res 63:2836–2843

    CAS  Google Scholar 

  23. Topalian SL, Rivoltini L, Mancini M, Markus NR, Robbins PF, Kawakami Y, Rosenberg SA (1994) Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 91:9461–9465

    Article  PubMed  CAS  Google Scholar 

  24. Forget MA, Turcotte S, Beauseigle D, Godin-Ethier J, Pelletier S, Martin J, Tanguay S, Lapointe R (2007) The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer 96:646–653

    Article  PubMed  CAS  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nuc Acids Res 29:e45

    Article  CAS  Google Scholar 

  26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nuc Acids Res 30:e36

    Article  Google Scholar 

  27. Topalian S, Muul L, Solomon D, Rosenberg SA (1987) Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods 102:127–141

    Article  PubMed  CAS  Google Scholar 

  28. Gomella LG, Sargent ER, Wade TP, Anglard P, Linehan WM, Kasid A (1989) Expression of transforming growth factor alpha in normal human adult kidney and enhanced expression of transforming growth factors alpha and beta 1 in renal cell carcinoma. Cancer Res 49:6972–6975

    PubMed  CAS  Google Scholar 

  29. Petrides PE, Bock S, Bovens J, Hofmann R, Jakse G (1990) Modulation of pro-epidermal growth-factor, pro-transforming growth factor-alpha and epidermal growth-factor receptor gene-expression in human renal carcinomas. Cancer Res 50:3934–3939

    PubMed  CAS  Google Scholar 

  30. Mydlo JH, Michaeli J, Cordoncardo C, Goldenberg AS, Heston WDW, Fair WR (1989) Expression of transforming growth factor-alpha and epidermal growth-factor receptor messenger-rna in neoplastic and nonneoplastic human-kidney tissue. Cancer Res 49:3407–3411

    PubMed  CAS  Google Scholar 

  31. Lager DJ, Slagel DD, Palechek PL (1994) The expression of epidermal growth-factor receptor and transforming growth-factor-alpha in renal-cell carcinoma. Modern Pathol 7:544–548

    CAS  Google Scholar 

  32. Uhlman DL, Nguyen P, Manivel JC, Zhang G, Hagen K, Fraley E, Aeppli D, Niehans GA (1995) Epidermal growth factor receptor and transforming growth factor alpha expression in papillary and nonpapillary renal cell carcinoma: correlation with metastatic behavior and prognosis. Clin Cancer Res 1:913–920

    PubMed  CAS  Google Scholar 

  33. Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S (2005) Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL−/− renal cancer. Cancer Res 65:5221–5230

    Article  PubMed  CAS  Google Scholar 

  34. Kudlow JE, Leung AW, Kobrin MS, Paterson AJ, Asa SL (1989) Transforming growth factor-alpha in the mammalian brain. Immunohistochemical detection in neurons and characterization of its mRNA. J Biol Chem 264:3880–3883

    PubMed  CAS  Google Scholar 

  35. Liscia DS, Merlo G, Ciardiello F, Kim N, Smith GH, Callahan R, Salomon DS (1990) Transforming growth factor-alpha messenger-RNA localization in the developing adult-rat and human mammary-gland by in situ hybridization. Dev Biol 140:123–131

    Article  PubMed  CAS  Google Scholar 

  36. Liu C, Woo A, Tsao MS (1990) Expression of transforming growth factor-alpha in primary human colon and lung carcinomas. Br J Cancer 62:425–429

    PubMed  CAS  Google Scholar 

  37. Thomas DM, Nasim MM, Gullick WJ, Alison MR (1992) Immunoreactivity of transforming growth factor alpha in the normal adult gastrointestinal tract. Gut 33:628–631

    Article  PubMed  CAS  Google Scholar 

  38. Gottlieb AB, Chang CK, Posnett DN, Fanelli B, Tam JP (1988) Detection of transforming growth factor-alpha in normal, malignant, and hyperproliferative human keratinocytes. J Exp Med 167:670–675

    Article  PubMed  CAS  Google Scholar 

  39. Coffey RJ Jr, Derynck R, Wilcox JN, Bringman TS, Goustin AS, Moses HL, Pittelkow MR (1987) Production and auto-induction of transforming growth factor-alpha in human keratinocytes. Nature 328:817–820

    Article  PubMed  CAS  Google Scholar 

  40. Madtes DK, Raines EW, Sakariassen KS, Assoian RK, Sporn MB, Bell GI, Ross R (1988) Induction of transforming growth factor-alpha in activated human alveolar macrophages. Cell 53:285–293

    Article  PubMed  CAS  Google Scholar 

  41. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Koup RA (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107:4781–4789

    Article  PubMed  CAS  Google Scholar 

  42. Younes SA, Yassine-Diab B, Dumont AR, Boulassel MR, Grossman Z, Routy JP, Sekaly RP (2003) HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J Exp Med 198:1909–1922

    Article  PubMed  CAS  Google Scholar 

  43. Iyasere C, Tilton JC, Johnson AJ, Younes S, Yassine-Diab B, Sekaly RP, Kwok WW, Migueles SA, Laborico AC, Shupert WL, Hallahan CW, Davey RT Jr, Dybul M, Vogel S, Metcalf J, Connors M (2003) Diminished proliferation of human immunodeficiency virus-specific CD4+ T cells is associated with diminished interleukin-2 (IL-2) production and is recovered by exogenous IL-2. J Virol 77:10900–10909

    Article  PubMed  CAS  Google Scholar 

  44. Zimmerli SC, Harari A, Cellerai C, Vallelian F, Bart PA, Pantaleo G (2005) HIV-1-specific IFN-gamma/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc Natl Acad Sci USA 102:7239–7244

    Article  PubMed  CAS  Google Scholar 

  45. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13

    Article  PubMed  CAS  Google Scholar 

  46. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999–1005

    Article  PubMed  CAS  Google Scholar 

  47. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299

    Article  PubMed  CAS  Google Scholar 

  48. Tateishi M, Ishida T, Mitsudomi T, Kaneko S, Sugimachi K (1990) Immunohistochemical evidence of autocrine growth-factors in adenocarcinoma of the human lung. Cancer Res 50:7077–7080

    PubMed  CAS  Google Scholar 

  49. Liu C, Tsao MS (1993) Invitro and in vivo expressions of transforming growth factor-alpha and tyrosine kinase receptors in human non-small-cell lung carcinomas. Am J Pathol 142:1155–1162

    PubMed  CAS  Google Scholar 

  50. Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR (1991) Transforming growth factor-alpha and epidermal growth-factor in human pancreatic-cancer. J Pathol 163:111–116

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka S, Imanishi K, Yoshihara M, Haruma K, Sumii K, Kajiyama G, Akamatsu S (1991) Immunoreactive transforming growth factor-alpha is commonly present in colorectal neoplasia. Am J Pathol 139:123–129

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The editorial assistance of Ovid Da Silva, Support Office, Research Centre, CHUM, is acknowledged. We also thank Robert Boileau for statistical analyses. N.A. was supported by a Senior Research Fellowship from the Canadian Institutes of Health Research and now holds a Donald Paty Career Development Award from the Multiple Sclerosis Society of Canada and a Chercheur-Boursier from the Fonds de la Recherche en Santé du Québec. R.L. is the recipient of a “Fond pour la recherche en santé du Québec” scholarship.

Conflict of interest statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réjean Lapointe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelletier, S., Tanguay, S., Lee, S. et al. TGF-alpha as a candidate tumor antigen for renal cell carcinomas. Cancer Immunol Immunother 58, 1207–1218 (2009). https://doi.org/10.1007/s00262-008-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0630-2

Keywords

Navigation