Skip to main content

Advertisement

Log in

Intratumoral interferon-α gene transfer enhances tumor immunity after allogeneic hematopoietic stem cell transplantation

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

One of the major challenges in the treatment of solid cancers by allogenic hematopoietic stem cell transfer (alloHSCT) is the specific enhancement of antitumor immunity. Interferon (IFN) is a cytokine with pleiotropic biological functions including an immunomoduration, and our preclinical studies have shown that an intratumoral IFN-α gene transfer induced strong local tumor control and systemic tumor-specific immunity. In the present study, we examined whether the IFN-α gene transfer could enhance recognition of tumor-associated antigens by donor T cells and augment the antitumor activity of alloHSCT. First, when a mouse IFN-α adenovirus vector (Ad-mIFN) was injected into subcutaneous xenografts of syngeneic renal and colon cancer cells, tumor growth was significantly suppressed in a dose-dependent manner. A significant tumor cell death and infiltration of immune cells was recognized in the Ad-mIFN-injected tumors, and the dendrtic cells isolated from the tumors showed a strong Th1-oriented response. The antitumor effect of Ad-mIFN was then examined in a murine model of minor histocompatibility antigen-mismatched alloHSCT. The intratumoral IFN-α gene transfer caused significant tumor suppression in the alloHSCT recipients, and this suppression was evident not only in the gene-transduced tumors but also in simultaneously inoculated distant tumors which did not receive the vector injection. A cytotoxicity assay showed specific tumor cell lysis by donor T cells responding to IFN-α. Graft-versus-host disease was not exacerbated serologically or clinically in the mice treated with IFN-α. This combination strategy deserves evaluation in future clinical trials for human solid cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sandmaier BM, Mackinnon S, Childs RW (2007) Reduced intensity conditioning for allogeneic hematopoietic cell transplantation: current perspectives. Biol Blood Marrow Transplant 13:87–97

    Article  PubMed  Google Scholar 

  2. Welniak LA, Blazar BR, Murphy WJ (2007) Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 25:139–170

    Article  PubMed  CAS  Google Scholar 

  3. Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T (2007) Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci 98:1139–1146

    Article  PubMed  CAS  Google Scholar 

  4. Gutterman JU (1994) Cytokine therapeutics: lessons from interferon alpha. Proc Natl Acad Sci USA 91:1198–1205

    Article  PubMed  CAS  Google Scholar 

  5. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:119–134

    Article  PubMed  CAS  Google Scholar 

  6. Einhorn S, Grander D (1996) Why do so many cancer patients fail to respond to interferon therapy? J Interferon Cytokine Res 16:275–281

    Article  PubMed  CAS  Google Scholar 

  7. Salmon P, Le Cotonnec JY, Galazka A, Abdul-Ahad A, Darragh A (1996) Pharmacokinetics and pharmacodynamics of recombinant human interferon-beta in healthy male volunteers. J Interferon Cytokine Res 16:759–764

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki K, Aoki K, Ohnami S et al (2003) Adenovirus-mediated gene transfer of interferon alpha improves dimethylnitrosamine-induced liver cirrhosis in rat model. Gene Ther 10:765–773

    Article  PubMed  CAS  Google Scholar 

  9. Ohashi M, Yoshida K, Kushida M et al (2005) Adenovirus-mediated interferon alpha gene transfer induces regional direct cytotoxicity and possible systemic immunity against pancreatic cancer. Br J Cancer 93:441–449

    Article  PubMed  CAS  Google Scholar 

  10. Zhang JF, Hu C, Geng Y et al (1996) Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci USA 93:4513–4518

    Article  PubMed  CAS  Google Scholar 

  11. Iqbal Ahmed CM, Johnson DE, Demers GW et al (2001) Interferon alpha2b gene delivery using adenoviral vector causes inhibition of tumor growth in xenograft models from a variety of cancers. Cancer Gene Ther 8:788–795

    Article  PubMed  CAS  Google Scholar 

  12. Hottiger MO, Dam TN, Nickoloff BJ, Johnson TM, Nabel GJ (1999) Liposome-mediated gene transfer into human basal cell carcinoma. Gene Ther 6:1929–1935

    Article  PubMed  CAS  Google Scholar 

  13. Horton HM, Anderson D, Hernandez P, Barnhart KM, Norman JA, Parker SE (1999) A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon alpha. Proc Natl Acad Sci USA 96:1553–1558

    Article  PubMed  CAS  Google Scholar 

  14. Hatanaka K, Suzuki K, Miura Y et al (2004) Interferon-alpha and antisense K-ras RNA combination gene therapy against pancreatic cancer. J Gene Med 6:1139

    Article  PubMed  CAS  Google Scholar 

  15. Hara H, Kobayashi A, Yoshida K et al (2007) Local interferon-alpha gene therapy elicits systemic immunity in a syngeneic pancreatic cancer model in hamster. Cancer Sci 98:455–463

    Article  PubMed  CAS  Google Scholar 

  16. Aoki K, Barker C, Danthinne X, Imperiale MJ, Nabel GJ (1999) Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro. Mol Med 5:224–231

    PubMed  CAS  Google Scholar 

  17. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  PubMed  CAS  Google Scholar 

  18. Zhang WW, Koch PE, Roth JA (1995) Detection of wild-type contamination in a recombinant adenoviral preparation by PCR. Biotechniques 18:444–447

    PubMed  CAS  Google Scholar 

  19. Nakayama E, Uenaka A (1985) Effect of in vivo administration of Lyt antibodies. Lyt phenotype of T cells in lymphoid tissues and blocking of tumor rejection. J Exp Med 161:345–355

    Article  PubMed  CAS  Google Scholar 

  20. Ohashi M, Kobayashi A, Hara H et al (2006) Allogeneic MHC gene transfer enhances antitumor activity of allogeneic hematopoietic stem cell transplantation without exacerbating graft-versus-host disease. Clin Cancer Res 12:2208–2215

    Article  PubMed  CAS  Google Scholar 

  21. Taguchi T (1986) Clinical studies of recombinant interferon alfa-2a (Roferon-A) in cancer patients. Cancer 57:1705–1708

    Article  PubMed  CAS  Google Scholar 

  22. Teshima T, Hill GR, Pan L et al (1999) IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest 104:317–325

    Article  PubMed  CAS  Google Scholar 

  23. Edinger M, Hoffmann P, Ermann J et al (2003) CD4 + CD25 + regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9:1144–1150

    Article  PubMed  CAS  Google Scholar 

  24. Pillai AB, George TI, Dutt S, Teo P, Strober S (2007) Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol 178:6242–6251

    PubMed  CAS  Google Scholar 

  25. Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Ganea D, Delgado M (2006) Vasoactive intestinal peptide induces regulatory dendritic cells that prevent acute graft-versus-host disease while maintaining the graft-versus-tumor response. Blood 107:3787–3794

    Article  PubMed  CAS  Google Scholar 

  26. Zhang C, Lou J, Li N et al (2007) Donor CD8 + T cells mediate graft-versus-leukemia activity without clinical signs of graft-versus-host disease in recipients conditioned with anti-CD3 monoclonal antibody. J Immunol 178:838–850

    PubMed  CAS  Google Scholar 

  27. Schmaltz C, Alpdogan O, Horndasch KJ et al (2001) Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 97:2886–2895

    Article  PubMed  CAS  Google Scholar 

  28. Mapara MY, Kim YM, Wang SP, Bronson R, Sachs DH, Sykes M (2002) Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 100:1903–1909

    Article  PubMed  CAS  Google Scholar 

  29. Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M (2002) Crucial role of timing of donor lymphocyte infusion in generating dissociated graft-versus-host and graft-versus-leukemia responses in mice receiving allogeneic bone marrow transplants. Blood 100:1894–1902

    Article  PubMed  CAS  Google Scholar 

  30. Michalek J, Collins RH, Durrani HP et al (2003) Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4 + T cells by virtue of their receptor beta loci sequences. Proc Natl Acad Sci USA 100:1180–1184

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Joe G, Zhu J et al (2004) Dendritic cell-activated CD44hiCD8 + T cells are defective in mediating acute graft-versus-host disease but retain graft-versus-leukemia activity. Blood 103:3970–3978

    Article  PubMed  CAS  Google Scholar 

  32. Anderson LD Jr, Mori S, Mann S, Savary CA, Mullen CA (2000) Pretransplant tumor antigen-specific immunization of allogeneic bone marrow transplant donors enhances graft-versus-tumor activity without exacerbation of graft-versus-host disease. Cancer Res 60:5797–5802

    PubMed  CAS  Google Scholar 

  33. Luznik L, Slansky JE, Jalla S et al (2003) Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood 101:1645–1652

    Article  PubMed  CAS  Google Scholar 

  34. Perales MA, Diab A, Cohen AD et al (2006) DNA immunization against tissue-restricted antigens enhances tumor immunity after allogeneic hemopoietic stem cell transplantation. J Immunol 177:4159–4167

    PubMed  CAS  Google Scholar 

  35. Teshima T, Mach N, Hill GR et al (2001) Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res 61:162–171

    PubMed  CAS  Google Scholar 

  36. Galanis E (2002) Technology evaluation: Allovectin-7, Vical. Curr Opin Mol Ther 4:80–87

    PubMed  CAS  Google Scholar 

  37. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189:1451–1460

    Article  PubMed  CAS  Google Scholar 

  38. Sato K, Hida S, Takayanagi H et al (2001) Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 31:3138–3146

    Article  PubMed  CAS  Google Scholar 

  39. Tough DF, Borrow P, Sprent J (1996) Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272:1947–1950

    Article  PubMed  CAS  Google Scholar 

  40. Santini SM, Lapenta C, Logozzi M et al (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191:1777–1788

    Article  PubMed  CAS  Google Scholar 

  41. Kobayashi A, Hara H, Ohashi M et al (2007) Allogeneic major histocompatibility complex gene transfer enhances an effective antitumor immunity in the early period of autologous hematopoietic stem cell transplantation. Clin Cancer Res (in press)

  42. Anderson LD Jr, Savary CA, Mullen CA (2000) Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graft-versus-tumor activity without exacerbating graft-versus-host disease. Blood 95:2426–2433

    PubMed  CAS  Google Scholar 

  43. Kurooka M, Kaneda Y (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res 67:227–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant-in-aid for the 3rd Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan, by grants-in-aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan and by the program for promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio). H. Hara, T. Nishimoto and M. Ohashi are awardees of a Research Resident Fellowship from the Foundation for Promotion of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Aoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, H., Kobayashi, A., Narumi, K. et al. Intratumoral interferon-α gene transfer enhances tumor immunity after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Immunother 58, 1007–1021 (2009). https://doi.org/10.1007/s00262-008-0616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0616-0

Keywords

Navigation