Skip to main content

Advertisement

Log in

Characterization of MHC class-I restricted TCRαβ+ CD4 CD8 double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) αβ+ CD4 CD8 double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-γ and TNF. Although lacking the CD8 molecule the gp100-specifc DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, Kunz-Schughart L, Schmidt CA, Andreesen R, Mackensen A (2005) Isolation and characterization of human antigen-specific TCR alpha beta+ CD4–CD8- double-negative regulatory T cells. Blood 105:2828–2835

    Article  PubMed  CAS  Google Scholar 

  2. Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18:14–17

    Article  PubMed  CAS  Google Scholar 

  3. Sprent J, Schaefer M, Lo D, Korngold R (1986) Functions of purified L3T4+ and Lyt-2+ cells in vitro and in vivo. Immunol Rev 91:195–218

    Article  PubMed  CAS  Google Scholar 

  4. Nishimura MI, Avichezer D, Custer MC, Lee CS, Chen C, Parkhurst MR, Diamond RA, Robbins PF, Schwartzentruber DJ, Rosenberg SA (1999) MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte. Cancer Res 59:6230–6238

    PubMed  CAS  Google Scholar 

  5. Takahama Y, Kosugi A, Singer A (1991) Phenotype, ontogeny, and repertoire of CD4–CD8- T cell receptor alpha beta+ thymocytes. Variable influence of self-antigens on T cell receptor V beta usage. J Immunol 146:1134–1141

    PubMed  CAS  Google Scholar 

  6. Herron LR, Eisenberg RA, Roper E, Kakkanaiah VN, Cohen PL, Kotzin BL (1993) Selection of the T cell receptor repertoire in Lpr mice. J Immunol 151:3450–3459

    PubMed  CAS  Google Scholar 

  7. Landolfi MM, Van Houten N, Russell JQ, Scollay R, Parnes JR, Budd RC (1993) CD2–CD4–CD8- lymph node T lymphocytes in MRL lpr/lpr mice are derived from a CD2+ CD4+ CD8+ thymic precursor. J Immunol 151:1086–1096

    PubMed  CAS  Google Scholar 

  8. Hammond DM, Nagarkatti PS, Gote LR, Seth A, Hassuneh MR, Nagarkatti M (1993) Double-negative T cells from MRL-lpr/lpr mice mediate cytolytic activity when triggered through adhesion molecules and constitutively express perforin gene. J Exp Med 178:2225–2230

    Article  PubMed  CAS  Google Scholar 

  9. Cai Z, Sprent J (1994) Resting and activated T cells display different requirements for CD8 molecules. J Exp Med 179:2005–2015

    Article  PubMed  CAS  Google Scholar 

  10. Young KJ, Kay LS, Phillips MJ, Zhang L (2003) Antitumor activity mediated by double-negative T cells. Cancer Res 63:8014–8021

    PubMed  CAS  Google Scholar 

  11. Ledbetter JA, Seaman WE, Tsu TT, Herzenberg LA (1981) Lyt-2 and lyt-3 antigens are on two different polypeptide subunits linked by disulfide bonds. Relationship of subunits to T cell cytolytic activity. J Exp Med 153:1503–1516

    Article  PubMed  CAS  Google Scholar 

  12. Newberg MH, Ridge JP, Vining DR, Salter RD, Engelhard VH (1992) Species specificity in the interaction of CD8 with the alpha 3 domain of MHC class I molecules. J Immunol 149:136–142

    PubMed  CAS  Google Scholar 

  13. Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB, Hoofnagle JH, Liang TJ, Alter H, Rehermann B (2002) Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 169:3447–3458

    PubMed  CAS  Google Scholar 

  14. Salter RD, Norment AM, Chen BP, Clayberger C, Krensky AM, Littman DR, Parham P (1989) Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8. Nature 338:345–347

    Article  PubMed  CAS  Google Scholar 

  15. Rudd CE, Anderson P, Morimoto C, Streuli M, Schlossman SF (1989) Molecular interactions T-cell subsets and a role of the CD4/CD8:p56lck complex in human T-cell activation. Immunol Rev 111:225–266

    Google Scholar 

  16. Muller D, Pederson K, Murray R, Frelinger JA (1991) A single amino acid substitution in an MHC class I molecule allows heteroclitic recognition by lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes. J Immunol 147:1392–1397

    PubMed  CAS  Google Scholar 

  17. Garcia KC, Scott CA, Brunmark A, Carbone FR, Peterson PA, Wilson IA, Teyton L (1996) CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 384:577–581

    Article  PubMed  CAS  Google Scholar 

  18. Daniels MA, Jameson SC (2000) Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 191:335–346

    Article  PubMed  CAS  Google Scholar 

  19. Mackensen A, Carcelain G, Viel S, Raynal MC, Michalaki H, Triebel F, Bosq J, Hercend T (1994) Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J Clin Invest 93:1397–1402

    Article  PubMed  CAS  Google Scholar 

  20. Meidenbauer N, Zippelius A, Pittet MJ, Laumer M, Vogl S, Heymann J, Rehli M, Seliger B, Schwarz S, Le Gal FA, Dietrich PY, Andreesen R, Romero P, Mackensen A (2004) High frequency of functionally active Melan-a-specific T cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 64:6319–6326

    Article  PubMed  CAS  Google Scholar 

  21. Salter RD, Howell DN, Cresswell P (1985) Genes regulating HLA class I antigen expression in T–B lymphoblast hybrids. Immunogenetics 21:235–246

    Article  PubMed  CAS  Google Scholar 

  22. Meidenbauer N, Marienhagen J, Laumer M, Vogl S, Heymann J, Andreesen R, Mackensen A (2003) Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161–2169

    PubMed  CAS  Google Scholar 

  23. Pannetier C, Even J, Kourilsky P (1995) T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol Today 16:176–181

    Article  PubMed  CAS  Google Scholar 

  24. Hendriks J, Xiao Y, Borst J (2003) CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 198:1369–1380

    Article  PubMed  CAS  Google Scholar 

  25. van Berkel ME, Oosterwegel MA (2006) CD28 and ICOS: similar or separate costimulators of T cells? Immunol Lett 105:115–122

    Article  PubMed  CAS  Google Scholar 

  26. Weinberg AD, Vella AT, Croft M (1998) OX-40: life beyond the effector T cell stage. Semin Immunol 10:471–480

    Article  PubMed  CAS  Google Scholar 

  27. Cheuk AT, Mufti GJ, Guinn BA (2004) Role of 4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther 11:215–226

    Article  PubMed  CAS  Google Scholar 

  28. Callender GG, Rosen HR, Roszkowski JJ, Lyons GE, Li M, Moore T, Brasic N, McKee MD, Nishimura MI (2006) Identification of a hepatitis C virus-reactive T cell receptor that does not require CD8 for target cell recognition. Hepatology 43:973–981

    Article  PubMed  CAS  Google Scholar 

  29. van der Veken LT, Hagedoorn RS, van Loenen MM, Willemze R, Falkenburg JH, Heemskerk MH (2006) Alphabeta T-cell receptor engineered gammadelta T cells mediate effective antileukemic reactivity. Cancer Res 66:3331–3337

    Article  PubMed  CAS  Google Scholar 

  30. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L (2000) Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6:782–789

    Article  PubMed  CAS  Google Scholar 

  31. Zhang ZX, Ma Y, Wang H, Arp J, Jiang J, Huang X, He KM, Garcia B, Madrenas J, Zhong R (2006) Double-negative T cells, activated by xenoantigen, lyse autologous B and T cells using a perforin/granzyme-dependent, Fas–Fas ligand-independent pathway. J Immunol 177:6920–6929

    PubMed  CAS  Google Scholar 

  32. Ma Y, He KM, Garcia B, Min W, Jevnikar A, Zhang ZX (2008) Adoptive transfer of double negative T regulatory cells induces B-cell death in vivo and alters rejection pattern of rat-to-mouse heart transplantation. Xenotransplantation 15:56–63

    Article  PubMed  Google Scholar 

  33. Roszkowski JJ, Lyons GE, Kast WM, Yee C, Van Besien K, Nishimura MI (2005) Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res 65:1570–1576

    Article  PubMed  CAS  Google Scholar 

  34. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI (1999) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163:507–513

    PubMed  CAS  Google Scholar 

  35. Cole DJ, Weil DP, Shilyansky J, Custer M, Kawakami Y, Rosenberg SA, Nishimura MI (1995) Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res 55:748–752

    PubMed  CAS  Google Scholar 

  36. Lyons GE, Moore T, Brasic N, Li M, Roszkowski JJ, Nishimura MI (2006) Influence of human CD8 on antigen recognition by T-cell receptor-transduced cells. Cancer Res 66:11455–11461

    Article  PubMed  CAS  Google Scholar 

  37. Kuball J, Schmitz FW, Voss RH, Ferreira EA, Engel R, Guillaume P, Strand S, Romero P, Huber C, Sherman LA, Theobald M (2005) Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity 22:117–129

    Article  PubMed  CAS  Google Scholar 

  38. Urdahl KB, Sun JC, Bevan MJ (2002) Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nature Immunol 3:772–779

    CAS  Google Scholar 

  39. Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TI, Adoro S, Adams A, Sharrow SO, Feigenbaum L, Singer A (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27:735–750

    Article  PubMed  CAS  Google Scholar 

  40. Landolfi MM, van Houten N, Russell JQ, Scollay R, Parnes JR, Budd RC (1993) CD2–CD4–CD8- lymph node T lymphocytes in MRL lpr/lpr mice are derived from a CD2+ CD4+ CD8+ thymic precursor. J Immunol 151:186–1096

    Google Scholar 

  41. Wadsworth S, Yui K, Siegel RM, Tenenholz DE, Hirsch JA, Greene MI (1990) Origin and selection of peripheral CD4–CD8- T cells bearing alpha/beta T cell antigen receptors in autoimmune gld mice. Eur J Immunol 20:723–730

    Article  PubMed  CAS  Google Scholar 

  42. Bristeau-Leprince A, Mateo V, Lim A, Maqerus-Chatinet A, Solary E, Fischer A, Rieuy-Laucat F, Gouqeon ML (2008) Human TCR alpha/beta+ CD4–CD8- double-negative T cells in patients with autoimmune lymphoproliferative syndrome express restricted Vbeta TCR diversity and are clonally related to CD8+ T cells. J Immunol 181:440–842

    PubMed  CAS  Google Scholar 

  43. Ford MS, Zhang ZX, Chen W, Zhang L (2006) Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. J Immunol 177:2803–2809

    PubMed  CAS  Google Scholar 

  44. Buhlmann JE, Elkin SK, Sharpe AH (2003) A role for the B7-1/B7-2:CD28/CTLA-4 pathway during negative selection. J Immunol 170:5421–5428

    PubMed  CAS  Google Scholar 

  45. Gao JX, Zhang H, Bai XF, Wen J, Zheng X, Liu J, Zheng P, Liu Y (2002) Perinatal blockade of b7-1 and b7-2 inhibits clonal deletion of highly pathogenic autoreactive T cells. J Exp Med 195:959–971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the patient who took part in this study. We thank Jana Berger for excellent technical assistance. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mackensen.

Additional information

A. Mackensen and K. Fischer contributed equally to this work and should be considered joint senior authors. This work was supported by the Deutsche Forschungsgemeinschaft (MA 1351/5-1, KFO 146) and NIH grants CA90873, CA102280, 104947 (MIN).

Companion paper: “Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition” by Tamson V. Moore et al. doi: 10.1007/s00262-008-0594-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voelkl, S., Moore, T.V., Rehli, M. et al. Characterization of MHC class-I restricted TCRαβ+ CD4 CD8 double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 58, 709–718 (2009). https://doi.org/10.1007/s00262-008-0593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0593-3

Keywords

Navigation