Cancer Immunology, Immunotherapy

, Volume 57, Issue 12, pp 1771–1780 | Cite as

Immunization with a GM3 ganglioside nanoparticulated vaccine confers an effector CD8+ T cells-mediated protection against melanoma B16 challenge

  • Zaima Mazorra
  • Circe Mesa
  • Audry Fernández
  • Luis E. Fernández
Original Article


Preventive immunotherapy is an attractive strategy for patients at a high risk of having cancer. The success of prophylactic cancer vaccines would depend on the selection of target antigens that are essential for tumour growth and progression. The overexpression of GM3 ganglioside in murine and human melanomas and its important role in tumour progression makes this self antigen a potential target for preventive immunotherapy of this neoplasm. We have previously shown that preventive administration of a GM3-based vaccine to C57BL/6 mice elicited the rejection of the GM3 positive-B16 melanoma cells in most of the animals. Despite the crucial role of cellular immune response in tumour protection, the involvement of T cells in anti-tumour immunity of ganglioside vaccines is not described. Here, we examined the mechanisms by which this immunogen confers tumour protection. We have found that induction of anti-GM3 IgG antibodies correlated with tumour protection. Surprisingly, CD8+ T cells, but not NK1.1+ cells, are required in the effector phase of the antitumour immune response. The depletion of CD4+ T cells during immunization phase did not affect the anti-tumour activity. In addition, T cells from surviving-immunized animals secreted IFNγ when were co-cultured with IFNα-treated B16 melanoma cells or DCs pulsed with melanoma extract. Paradoxically, in spite of the glycolipidic nature of this antigen, these findings demonstrate the direct involvement of the cellular immune response in the anti-tumour protection induced by a ganglioside-based vaccine.


Preventive cancer vaccines Melanoma GM3 ganglioside CD8 T cells 



Very small size proteoliposomes


Fetal calf serum


Outer membrane proteins


Monoclonal antibodies


Propidium iodide




Complement-mediated cytotoxicity


Bone-marrow-derived dendritic cells


  1. 1.
    Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3:630–641PubMedCrossRefGoogle Scholar
  2. 2.
    Kirk GD, Bah E, Montesano R (2006) Molecular epidemiology of human liver cancer: insights into etiology, pathogenesis and prevention from The Gambia, West Africa. Carcinogenesis 27:2070–2082PubMedCrossRefGoogle Scholar
  3. 3.
    Roden RB, Monie A, Wu TC (2007) Opportunities to improve the prevention and treatment of cervical cancer. Curr Mol Med 7:490–503PubMedCrossRefGoogle Scholar
  4. 4.
    Gerstenblith MR, Goldstein AM, Tucker MA, Fraser MC (2007) Genetic testing for melanoma predisposition: current challenges. Cancer Nurs 30:452–459. Quiz 462–463PubMedGoogle Scholar
  5. 5.
    Hamilton WB, Helling F, Lloyd KO, Livingston PO (1993) Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Int J Cancer 53:566–573PubMedCrossRefGoogle Scholar
  6. 6.
    Ishioka GY, Lamont AG, Thomson D, Bulbow N, Gaeta FC, Sette A, Grey HM (1992) MHC interaction and T cell recognition of carbohydrates and glycopeptides. J Immunol 148:2446–2451PubMedGoogle Scholar
  7. 7.
    Shamshiev A, Donda A, Carena I, Mori L, Kappos L, De Libero G (1999) Self glycolipids as T-cell autoantigens. Eur J Immunol 29:1667–1675PubMedCrossRefGoogle Scholar
  8. 8.
    Livingston PO, Wong GY, Adluri S, Tao Y, Padavan M, Parente R, Hanlon C, Calves MJ, Helling F, Ritter G et al (1994) Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol 12:1036–1044PubMedGoogle Scholar
  9. 9.
    Livingston PO, Ragupathi G (1997) Carbohydrate vaccines that induce antibodies against cancer. 2. Previous experience and future plans. Cancer Immunol Immunother 45:10–19PubMedCrossRefGoogle Scholar
  10. 10.
    Ravindranath MH, Muthugounder S, Hannah MR, Morton DL (2007) Significance of endogenous augmentation of antiganglioside IgM in cancer patients: potential tool for early detection and management of cancer therapy. Ann N Y Acad Sci 1107:212–222PubMedCrossRefGoogle Scholar
  11. 11.
    Estevez F, Carr A, Solorzano L, Valiente O, Mesa C, Barroso O, Sierra GV, Fernandez LE (1999) Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 18:190–197PubMedCrossRefGoogle Scholar
  12. 12.
    Alonso DF, Gabri MR, Guthmann MD, Fainboim L, Gomez DE (1999) A novel hydrophobized GM3 ganglioside/Neisseria meningitidis outer-membrane-protein complex vaccine induces tumor protection in B16 murine melanoma. Int J Oncol 15:59–66PubMedGoogle Scholar
  13. 13.
    Carr A, Mazorra Z, Alonso DF, Mesa C, Valiente O, Gomez DE, Perez R, Fernandez LE (2001) A purified GM3 ganglioside conjugated vaccine induces specific, adjuvant-dependent and non-transient antitumour activity against B16 mouse melanoma in vitro and in vivo. Melanoma Res 11:219–227PubMedCrossRefGoogle Scholar
  14. 14.
    Harris N, Campbell C, Le Gros G, Ronchese F (1997) Blockade of CD28/B7 co-stimulation by mCTLA4-Hgamma1 inhibits antigen-induced lung eosinophilia but not Th2 cell development or recruitment in the lung. Eur J Immunol 27:155–161PubMedCrossRefGoogle Scholar
  15. 15.
    Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92PubMedCrossRefGoogle Scholar
  16. 16.
    Hofbauer GF, Geertsen R, Laine E, Burg G, Dummer R (2001) Impact of interferons on the expression of melanoma-associated antigens in melanoma short-term cell cultures. Melanoma Res 11:213–218PubMedCrossRefGoogle Scholar
  17. 17.
    Koon HB, Atkins MB (2007) Update on therapy for melanoma: opportunities for patient selection and overcoming tumor resistance. Expert Rev Anticancer Ther 7:79–88PubMedCrossRefGoogle Scholar
  18. 18.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedCrossRefGoogle Scholar
  19. 19.
    Gabri MR, Mazorra Z, Ripoll GV, Mesa C, Fernandez LE, Gomez DE, Alonso DF (2006) Complete antitumor protection by perioperative immunization with GM3/VSSP vaccine in a preclinical mouse melanoma model. Clin Cancer Res 12:7092–7098PubMedCrossRefGoogle Scholar
  20. 20.
    Gabri MR, Ripoll GV, Alonso DF, Gomez DE (2002) Role of cell surface GM3 ganglioside and sialic acid in the antitumor activity of a GM3-based vaccine in the murine B16 melanoma model. J Cancer Res Clin Oncol 128:669–677PubMedCrossRefGoogle Scholar
  21. 21.
    Ravindranath MH, Brazeau SM, Morton DL (1994) Efficacy of tumor cell vaccine after incorporating monophosphoryl lipid A (MPL) in tumor cell membranes containing tumor-associated ganglioside. Experientia 50:648–653PubMedCrossRefGoogle Scholar
  22. 22.
    Perez CA, Ravindranath MH, Soh D, Gonzales A, Ye W, Morton DL (2002) Serum anti-ganglioside IgM antibodies in soft tissue sarcoma: clinical prognostic implications. Cancer J 8:384–394PubMedCrossRefGoogle Scholar
  23. 23.
    Ravindranath MH, Hsueh EC, Verma M, Ye W, Morton DL (2003) Serum total ganglioside level correlates with clinical course in melanoma patients after immunotherapy with therapeutic cancer vaccine. J Immunother 26:277–285PubMedCrossRefGoogle Scholar
  24. 24.
    Ragupathi G, Liu NX, Musselli C, Powell S, Lloyd K, Livingston PO (2005) Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J Immunol 174:5706–5712PubMedGoogle Scholar
  25. 25.
    Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181PubMedCrossRefGoogle Scholar
  26. 26.
    Bohm W, Thoma S, Leithauser F, Moller P, Schirmbeck R, Reimann J (1998) T cell-mediated, IFN-gamma-facilitated rejection of murine B16 melanomas. J Immunol 161:897–908PubMedGoogle Scholar
  27. 27.
    Lizee G, Radvanyi LG, Overwijk WW, Hwu P (2006) Immunosuppression in melanoma immunotherapy: potential opportunities for intervention. Clin Cancer Res 12:2359s–2365sPubMedCrossRefGoogle Scholar
  28. 28.
    Prevost-Blondel A, Neuenhahn M, Rawiel M, Pircher H (2000) Differential requirement of perforin and IFN-gamma in CD8 T cell-mediated immune responses against B16.F10 melanoma cells expressing a viral antigen. Eur J Immunol 30:2507–2515PubMedCrossRefGoogle Scholar
  29. 29.
    Winter H, Hu HM, McClain K, Urba WJ, Fox BA (2001) Immunotherapy of melanoma: a dichotomy in the requirement for IFN-gamma in vaccine-induced antitumor immunity versus adoptive immunotherapy. J Immunol 166:7370–7380PubMedGoogle Scholar
  30. 30.
    Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758PubMedCrossRefGoogle Scholar
  31. 31.
    Perales MA, Wolchok JD (2004) CD4 help and tumor immunity: beyond the activation of cytotoxic T lymphocytes. Ann Surg Oncol 11:881–882PubMedCrossRefGoogle Scholar
  32. 32.
    Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183:87–97PubMedCrossRefGoogle Scholar
  33. 33.
    Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543PubMedCrossRefGoogle Scholar
  34. 34.
    Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R (2003) Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol 171:5940–5947PubMedGoogle Scholar
  35. 35.
    Prasad SJ, Farrand KJ, Matthews SA, Chang JH, McHugh RS, Ronchese F (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+ CD25+ regulatory T cells. J Immunol 174:90–98PubMedGoogle Scholar
  36. 36.
    Zhang C, Zhang J, Tian Z (2006) The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol 3:241–254PubMedGoogle Scholar
  37. 37.
    Gray JD, Horwitz DA (1995) Activated human NK cells can stimulate resting B cells to secrete immunoglobulin. J Immunol 154:5656–5664PubMedGoogle Scholar
  38. 38.
    Gao N, Dang T, Dunnick WA, Collins JT, Blazar BR, Yuan D (2005) Receptors and counter receptors involved in NK–B cell interactions. J Immunol 174:4113–4119PubMedGoogle Scholar
  39. 39.
    Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, Maione D, Volpini G, Finco O, Nuti S, Tavarini S, Dellabona P, Rappuoli R, Casorati G, Abrignani S (2007) Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA 104:3984–3989PubMedCrossRefGoogle Scholar
  40. 40.
    Croci S, Nicoletti G, Landuzzi L, De Giovanni C, Astolfi A, Marini C, Di Carlo E, Musiani P, Forni G, Nanni P, Lollini PL (2004) Immunological prevention of a multigene cancer syndrome. Cancer Res 64:8428–8434PubMedCrossRefGoogle Scholar
  41. 41.
    Quaglino E, Iezzi M, Mastini C, Amici A, Pericle F, Di Carlo E, Pupa SM, De Giovanni C, Spadaro M, Curcio C, Lollini PL, Musiani P, Forni G, Cavallo F (2004) Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res 64:2858–2864PubMedCrossRefGoogle Scholar
  42. 42.
    Mesa C, De Leon J, Rigley K, Fernandez LE (2004) Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation. Vaccine 22:3045–3052PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Zaima Mazorra
    • 1
  • Circe Mesa
    • 1
  • Audry Fernández
    • 1
  • Luis E. Fernández
    • 1
  1. 1.Department of VaccinesCenter of Molecular ImmunologyHavanaCuba

Personalised recommendations