Skip to main content

Advertisement

Log in

Combination of two fiber-mutant adenovirus vectors, one encoding the chemokine FKN and another encoding cytokine interleukin 12, elicits notably enhanced anti-tumor responses

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

For achieving optimal cancer immunotherapy, it is anticipated that both the activation and infiltration of immune cells into tumor are indispensable. In the present study, fiber-mutant adenovirus vectors (Ad) encoding chemokine FKN, (AdRGD-FKN), and cytokine interleukin 12, (AdRGD-IL-12), were constructed. The in vivo gene expression of AdRGD was confirmed and the combination of both FKN and IL-12 encoding Ad elicited synergistic anti-tumor activity in ovarian carcinoma, which induced tumor regression in all tumor-bearing mice, while using FKN alone did not show notable tumor-suppressive effect. The treatment with both IL-12 and FKN induced long-term specific immunity against OV-HM tumors in tumor-rejected mice. The results of immunohistochemical staining for CD3+ and perforin-positive cells suggested that the failure of using FKN alone was because of the inactivation of infiltrated immune cells. In contrast, cotransduction with IL-12 and FKN could induce more activated tumor-infiltrating immune cells than that transducted with FKN or IL-12 alone. The results indicated that using both chemokine and cytokine might be a powerful tool and a promising way for effective cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ad:

Adenovirus vector

AdRGD:

RGD fiber-mutant Ad

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

FBS:

Fetal bovine serum

NK:

Natural killer

PBS:

Phosphate-buffered saline

PFU:

Plaque forming unit

References

  1. Schuster M, Nechansky A, Kircheis R (2006) Cancer immunotherapy. Biotechnol J 1:138–147

    Article  PubMed  CAS  Google Scholar 

  2. Gao JQ, Sugita T, Kanagawa N, Iida K, Eto Y, Motomura Y, Mizuguchi H, Tsutsumi Y, Hayakawa T, Mayumi T, Nakagawa S (2005) Single intratumoral injection of interleukin 12 encoded in fiber-mutant adenoviral vector induced the remarkable anti-tumor and anti-metastatic activity in Meth-A fibrosarcoma. Biochem Biophys Res Commun 328:1043–1050

    Article  PubMed  CAS  Google Scholar 

  3. Slettenaar VI, Wilson JL (2006) The chemokine network: a target in cancer biology? Adv Drug Deliv Rev 58:962–974

    Article  PubMed  CAS  Google Scholar 

  4. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    Article  PubMed  CAS  Google Scholar 

  5. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  PubMed  CAS  Google Scholar 

  6. Pivarcsi A, Müller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, Gerber PA, Liersch R, Buenemann E, Sonkoly E, Wiesner U, Hoffmann TK, Schneider L, Piekorz R, Enderlein E, Reifenberger J, Rohr UP, Haas R, Boukamp P, Nürnberg B, Ruzicha T, Zlotnik A, Homey B (2007) Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci USA 104:19055–19060

    PubMed  CAS  Google Scholar 

  7. Kanagawa N, Niwa M, Hatanaka Y, Tani Y, Nakagawa S, Fujita T, Yamamoto A, Okada N (2007) CC-chemokine ligand 17 gene therapy induces tumor regression through augmentation of tumor-infiltrating immune cells in a murine model of preexisting CT26 colon carcinoma. Int J Cancer 121:2013–2022

    Article  PubMed  CAS  Google Scholar 

  8. Mule JJ, Custer M, Averbook B, Yang JC, Weber JS, Goeddel DV, Rosenberg SA, Schall TJ (1996) RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations. Hum Gene Ther 7:1545–1553

    Article  PubMed  CAS  Google Scholar 

  9. Guo J, Wang B, Zhang M, Chen T, Yu Y, Regulier E, Homann H, Qin Z, Ju DW (2002) Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther 9:793–803

    Article  PubMed  CAS  Google Scholar 

  10. Maric M, Chen L, Sherry B, Liu Y (1997) A mechanism for selective recruitement of CD8 T cells into B7-1-transfected plasmacytoma: role of macrophage-inflammatory protein 1α. J Immunol 159:360–368

    PubMed  CAS  Google Scholar 

  11. Dillo D, Bacon K, Holden W, Zhong W, Burdach S, Zlotnik A (1996) Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 2:1090–1095

    Article  Google Scholar 

  12. Okada N, Gao JQ, Sasaki A, Niwa M, Okada Y, Nakayama T, Yoshie O, Mizuguchi H, Hayakawa T, Fujita T, Yamamoto A, Tsutsumi Y, Mayumi T, Nakagawa S (2004) Anti-tumor activity of chemokine is affected by both the kinds of tumors and the activation state of host’s immune system: implications for chemokine-based cancer immunotherapy. Biochem Biophys Res Commun 317:68–76

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa M, Umehara K, Yu WG, Uekusa Y, Nakajima C, Tsujimura T, Kubo T, Fujiwara H, Hamaoka T (1999) A critical role for a peritumoral stromal reaction in the induction of T-cell migration responsible for interleukin-12-induced tumor regression. Cancer Res 59:1531–1538

    PubMed  CAS  Google Scholar 

  14. Mazzolini G, Prieto J, Melero I (2003) Gene therapy of cancer with interleukin 12. Curr Pharm Des 9:1981–1991

    Article  PubMed  CAS  Google Scholar 

  15. Emtage PCR, Wan Y, Hitt M, Graham FL, Muller WJ, Zlotnik A, Gauldie J (1999) Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum Gene Ther 10:697–709

    CAS  Google Scholar 

  16. Gao JQ, Tsuda Y, Katayama K, Nakayama T, Hatanaka Y, Tani Y, Mizuguchi H, Hayakawa T, Yoshie Y, Tsutsumi Y, Mayumi T, Nakagawa S (2003) Anti-tumor effect by interleukin-11 receptor alpha-locus chemokine/fkn, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res 63:4420–4425

    PubMed  CAS  Google Scholar 

  17. Gao JQ, Kanagawa N, Motomura Y, Yanagawa T, Sugita T, Hatanaka Y, Tani Y, Mizuguchi H, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S (2007) Cotransduction of CCL27 gene can improve the efficacy and safety of IL-12 gene therapy for cancer. Gene Ther 14:491–502

    Article  PubMed  CAS  Google Scholar 

  18. Mizuguchi H, Kay MA, Hayakawa T (2001) In vitro ligation-based cloning of foreign DNAs into the E3 and E1 deletion regions for generation of recombinant adenovirus vectors. Biotechniques 30:1112–1114

    PubMed  CAS  Google Scholar 

  19. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA, Hayakawa T (2001) A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther 8:730–735

    Article  PubMed  CAS  Google Scholar 

  20. Mizuguchi H, Kay MA (1998) Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther 9:2577–2583

    Article  PubMed  CAS  Google Scholar 

  21. Maizel V Jr, White DO, Scharff MD (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36:115–125

    Article  PubMed  CAS  Google Scholar 

  22. Wiley website: http://www.wiley.co.uk/genmed/clinical/

  23. St. George JA (2003) Gene therapy progress and prospects: adenoviral vectors. Gene Ther 10:1135–1141

    Article  PubMed  CAS  Google Scholar 

  24. Wu H, Han T, Lam JT, Leath CA, Dmitriev I, Kashentseva E, Barnes MN, Alvarez RD, Curiel DT (2004) Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Ther 11:874–878

    Article  PubMed  CAS  Google Scholar 

  25. Okada Y, Okada N, Nakagawa S, Mizuguchi H, Kanehira M, Nishino N, Takahashi K, Mizuno N, Hayakawa T, Mayumi T (2002) Fiber-mutant technique can augment gene transduction efficacy and antitumor effects against established murine melanoma by cytokine-gene therapy using adenovirus vectors. Cancer Lett 177:57–63

    Article  PubMed  CAS  Google Scholar 

  26. Gao JQ, Inoue S, Tsukada Y, Katayama K, Eto Y, Kurachi S, Mizuguchi H, Hayakawa T, Tsutsumi Y, Mayumi T, Nakagawa S (2004) High gene expression of mutant adenovirus vector both in vitro and in vivo with the insertion of integrin-targeting peptide into the fiber. Pharmazie 59:571–572

    PubMed  CAS  Google Scholar 

  27. Akporiaye ET, Hersh E (1999) Clinical aspects of intratumoral gene therapy. Curr Opin Mol Ther 1:443–453

    PubMed  CAS  Google Scholar 

  28. Dummer R, Hassel JC, Fellenberg F, Eichmuller S, Maier T, Slod P, Acres B, Bleuzen P, Bataille V, Squiban P, Burg G, Urosevic M (2004) Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumor regressions in cutaneous lymphomas. Blood 104:1631–1638

    Article  PubMed  CAS  Google Scholar 

  29. Gao JQ, Sugita T, Kanagawa N, Iida K, Okada N, Mizuguchi H, Nakayama T, Hayakawa T, Yoshie O, Tsutsumi Y, Mayumi T, Nakagawa S (2005) Anti-tumor responses induced by chemokine ccl19 transfected into an ovarian carcinoma model via fiber-mutant adenovirus vector. Biol Pharm Bull 28:1066–1070

    Article  PubMed  CAS  Google Scholar 

  30. McDermott DF (2007) Update on the application of interleukin-2 in the treatment of renal cell carcinoma. Clin Cancer Res 15:716s-720s

    Article  Google Scholar 

  31. Paillard F (1999) Cytokine and chemokine: a stimulating couple. Hum Gene Ther 10:695–696

    Article  PubMed  CAS  Google Scholar 

  32. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 9:909–915

    Article  CAS  Google Scholar 

  33. Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:155–168

    Article  PubMed  CAS  Google Scholar 

  34. Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I, Benito A, Larrache J, Pueyo J, Subtil JC, Olague C, Sola J, Sadaba B, Lacasa C, Melero I, Qian C, Prieto J (2004) Phase 1 trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 22:1389–1397

    Article  PubMed  CAS  Google Scholar 

  35. Vecchio MD, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13:4677–4685

    Article  PubMed  Google Scholar 

  36. Kerbel RS, Hawley RG (1995) Interleukin 12: newest member of the antiangiogenesis club. J Natl Cancer Inst 87:557–559

    Article  PubMed  CAS  Google Scholar 

  37. Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol 159:1521–1530

    PubMed  CAS  Google Scholar 

  38. Stepp SE, Mathew PA, Bennett M, Basile GS, Kumar V (2000) Perforin: more than just an effector molecule. Immunol Today 21:254–256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Osamu Yoshie and Dr. Takashi Nakayama (Kinki University, Japan) for their helpful discussion and supplying the plasmid encoded chemokine. This study was supported by grants from the Ministry of Health, Labor, and Welfare of Japan, by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the National Natural Science Foundation of China (NSFC 30572270), and SRF for ROCS (2006-331).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Qing Gao or Shinsaku Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, JQ., Kanagawa, N., Xu, DH. et al. Combination of two fiber-mutant adenovirus vectors, one encoding the chemokine FKN and another encoding cytokine interleukin 12, elicits notably enhanced anti-tumor responses. Cancer Immunol Immunother 57, 1657–1664 (2008). https://doi.org/10.1007/s00262-008-0499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0499-0

Keywords

Navigation