Skip to main content

Advertisement

Log in

TARC and RANTES enhance antitumor immunity induced by the GM-CSF-transduced tumor vaccine in a mouse tumor model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Introduction

Transduction of the granulocyte-macrophage colony stimulating factor (GM-CSF) gene into mouse tumor cells abrogates their tumorigenicity in vivo. Our previous report demonstrated that gene transduction of GM-CSF with either TARC or RANTES chemokines suppressed in vivo tumor formation. In this paper, we examined whether the addition of either recombinant TARC or RANTES proteins to irradiated GM-CSF-transduced tumor vaccine cells enhanced antitumor immunity against established mouse tumor models to examine its future clinical application.

Materials and methods

Three million irradiated WEHI3B cells retrovirally transduced with murine GM-CSF cDNA in combination with either recombinant TARC or RANTES were subcutaneously inoculated into syngeneic WEHI3B-preestablished BALB/c mice.

Results

Vaccinations were well tolerated. Mice treated with GM-CSF-transduced cells and the chemokines demonstrated significantly longer survival than mice treated with GM-CSF-transduced cells alone. Splenocytes harvested from mice treated with the former vaccines produced higher levels of IL-4, IL-6, IFN-γ, and TNF-α, suggesting enhanced innate and adaptive immunity. Immunohistochemical analysis of tumor sections after vaccination revealed a more significant contribution of CD4+ and CD8+ T cells to tumor repression in the combined vaccine groups than controls.

Conclusions

TARC and RANTES enhance the immunological antitumor effect induced by GM-CSF in mouse WEHI3B tumor models and may be clinically useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GM-CSF:

Granulocyte-macrophage colony stimulating factor

TARC:

Thymus and activation-regulated chemokine

RANTES:

Regulated on activation, normal T-cell expressed and secreted

APCs:

Antigen-presenting cells

References

  1. Brunner C, Seiderer J, Schlamp A, Bidlingmaier M, Eigler A, Haimerl W, Lehr HA, Krieg AM, Hartmann G, Endres S (2000) Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 165:6278

    PubMed  CAS  Google Scholar 

  2. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360:258

    Article  PubMed  CAS  Google Scholar 

  3. Chu Y, Xia M, Lin Y, Li A, Wang Y, Liu R, Xiong S (2006) Th2-dominated antitumor immunity induced by DNA immunization with the genes coding for a basal core peptide PDTRP and GM-CSF. Cancer Gene Ther 13:510

    Article  PubMed  CAS  Google Scholar 

  4. Costello R, O’Callaghan T, Sebahoun G (2005) [Eosinophils and antitumour response]. Rev Med Interne 26:479

    Article  PubMed  CAS  Google Scholar 

  5. Doganci A, Eigenbrod T, Krug N, De Sanctis GT, Hausding M, Erpenbeck VJ, Haddad el B, Lehr HA, Schmitt E, Bopp T, Kallen KJ, Herz U, Schmitt S, Luft C, Hecht O, Hohlfeld JM, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Rose-John S, Renz H, Neurath MF, Galle PR, Finotto S (2005) The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J Clin Invest 115:313

    PubMed  CAS  Google Scholar 

  6. Dranoff G (2005) CTLA-4 blockade: unveiling immune regulation. J Clin Oncol 23:662

    Article  PubMed  CAS  Google Scholar 

  7. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539

    Article  PubMed  CAS  Google Scholar 

  8. Ellem KA, O’Rourke MG, Johnson GR, Parry G, Misko IS, Schmidt CW, Parsons PG, Burrows SR, Cross S, Fell A, Li CL, Bell JR, Dubois PJ, Moss DJ, Good MF, Kelso A, Cohen LK, Dranoff G, Mulligan RC (1997) A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunol Immunother 44:10

    Article  PubMed  CAS  Google Scholar 

  9. Elsner J, Escher SE, Forssmann U (2004) Chemokine receptor antagonists: a novel therapeutic approach in allergic diseases. Allergy 59:1243

    Article  PubMed  CAS  Google Scholar 

  10. Fujii S, Hamada H, Fujimoto K, Shimomura T, Kawakita M (1999) Activated dendritic cells from bone marrow cells of mice receiving cytokine-expressing tumor cells are associated with the enhanced survival of mice bearing syngeneic tumors. Blood 93:4328

    PubMed  CAS  Google Scholar 

  11. Granucci F, Girolomoni G, Lutz MB, Ricciardi-Castagnoli P (1995) Recombinant GM-CSF induces cytokine production in mouse dendritic cell clones. Adv Exp Med Biol 378:31

    PubMed  CAS  Google Scholar 

  12. Hege KM, Carbone DP (2003) Lung cancer vaccines and gene therapy. Lung Cancer 41(Suppl 1):S103

    Article  PubMed  Google Scholar 

  13. Hege KM, Jooss K, Pardoll D (2006) GM-CSF gene-modifed cancer cell immunotherapies: of mice and men. Int Rev Immunol 25:321

    Article  PubMed  CAS  Google Scholar 

  14. Heufler C, Koch F, Schuler G (1988) Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 167:700

    Article  PubMed  CAS  Google Scholar 

  15. Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16:249

    Article  PubMed  CAS  Google Scholar 

  16. Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O (1999) Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol 11:81

    Article  PubMed  CAS  Google Scholar 

  17. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693

    Article  PubMed  CAS  Google Scholar 

  18. Ishida T, Ueda R (2006) CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci 97:1139

    Article  PubMed  CAS  Google Scholar 

  19. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC, Lillemoe KD, O’Reilly S, Abrams RA, Pardoll DM, Cameron JL, Yeo CJ (2001) Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 19:145

    PubMed  CAS  Google Scholar 

  20. Kato Y, Pawankar R, Kimura Y, Kawana S (2006) Increased expression of RANTES, CCR3 and CCR5 in the lesional skin of patients with atopic eczema. Int Arch Allergy Immunol 139:245

    Article  PubMed  CAS  Google Scholar 

  21. Kinoshita Y, Kono T, Yasumoto R, Kishimoto T, Wang CY, Haas GP, Nishisaka N (2001) Antitumor effect on murine renal cell carcinoma by autologous tumor vaccines genetically modified with granulocyte-macrophage colony-stimulating factor and interleukin-6 cells. J Immunother 24:205

    Article  CAS  Google Scholar 

  22. Levitsky HI, Montgomery J, Ahmadzadeh M, Staveley-O’Carroll K, Guarnieri F, Longo DL, Kwak LW (1996) Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156:3858

    PubMed  CAS  Google Scholar 

  23. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322

    PubMed  CAS  Google Scholar 

  24. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391:344

    Article  PubMed  CAS  Google Scholar 

  25. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677

    Article  PubMed  CAS  Google Scholar 

  26. Miller G, Pillarisetty VG, Shah AB, Lahrs S, Xing Z, DeMatteo RP (2002) Endogenous granulocyte-macrophage colony-stimulating factor overexpression in vivo results in the long-term recruitment of a distinct dendritic cell population with enhanced immunostimulatory function. J Immunol 169:2875

    PubMed  CAS  Google Scholar 

  27. Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227

    Article  PubMed  CAS  Google Scholar 

  28. Nagai E, Ogawa T, Kielian T, Ikubo A, Suzuki T (1998) Irradiated tumor cells adenovirally engineered to secrete granulocyte/macrophage-colony-stimulating factor establish antitumor immunity and eliminate pre-existing tumors in syngeneic mice. Cancer Immunol Immunother 47:72

    Article  PubMed  CAS  Google Scholar 

  29. Nakazaki Y, Hase H, Inoue H, Beppu Y, Meng XK, Sakaguchi G, Kurita R, Asano S, Nakamura Y, Tani K (2006) Serial analysis of gene expression in progressing and regressing mouse tumors implicates the involvement of RANTES and TARC in antitumor immune responses. Mol Ther 14:599

    Article  PubMed  CAS  Google Scholar 

  30. Nakazaki Y, Tani K, Lin ZT, Sumimoto H, Hibino H, Tanabe T, Wu MS, Izawa K, Hase H, Takahashi S, Tojo A, Azuma M, Hamada H, Mori S, Asano S (1998) Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Ther 5:1355

    Article  PubMed  CAS  Google Scholar 

  31. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807

    Article  PubMed  CAS  Google Scholar 

  32. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033

    Article  PubMed  CAS  Google Scholar 

  33. Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421

    PubMed  CAS  Google Scholar 

  34. Romani N, Kampgen E, Koch F, Heufler C, Schuler G (1990) Dendritic cell production of cytokines and responses to cytokines. Int Rev Immunol 6:151

    Article  PubMed  CAS  Google Scholar 

  35. Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, Hodi FS, Jaklitsch M, Mentzer S, Swanson S, Lukanich J, Bueno R, Wain J, Mathisen D, Wright C, Fidias P, Donahue D, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Sugarbaker D, Mihm M, Dranoff G (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 21:624

    Article  PubMed  Google Scholar 

  36. Schaniel C, Sallusto F, Ruedl C, Sideras P, Melchers F, Rolink AG (1999) Three chemokines with potential functions in T lymphocyte-independent and -dependent B lymphocyte stimulation. Eur J Immunol 29:2934

    Article  PubMed  CAS  Google Scholar 

  37. Shibata S, Okano S, Yonemitsu Y, Onimaru M, Sata S, Nagata-Takeshita H, Inoue M, Zhu T, Hasegawa M, Moroi Y, Furue M, Sueishi K (2006) Induction of efficient antitumor immunity using dendritic cells activated by recombinant Sendai virus and its modulation by exogenous IFN-beta gene. J Immunol 177:3564

    PubMed  CAS  Google Scholar 

  38. Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA, Lazenby AJ, Cohen LK, Finn CC, Clift SM, Hauda KM, Beck LA, Leiferman KM, Owens AH Jr, Piantadosi S, Dranoff G, Mulligan RC, Pardoll DM, Marshall FF (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 57:1537

    PubMed  CAS  Google Scholar 

  39. Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M, Weber CE, Baccala AA, Goemann MA, Clift SM, Ando DG, Levitsky HI, Cohen LK, Sanda MG, Mulligan RC, Partin AW, Carter HB, Piantadosi S, Marshall FF, Nelson WG (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 59:5160

    PubMed  CAS  Google Scholar 

  40. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, Hodi FS, Liebster L, Lam P, Mentzer S, Singer S, Tanabe KK, Cosimi AB, Duda R, Sober A, Bhan A, Daley J, Neuberg D, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Clift S, Cohen LK, Mulligan RC, Dranoff G (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95:13141

    Article  PubMed  CAS  Google Scholar 

  41. Steinman RM, Witmer-Pack M, Inaba K (1993) Dendritic cells: antigen presentation, accessory function and clinical relevance. Adv Exp Med Biol 329:1

    PubMed  CAS  Google Scholar 

  42. Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS, Jackson SS, Gorgone DA, Lifton MA, Letvin NL, Barouch DH (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114:1334

    PubMed  CAS  Google Scholar 

  43. Tan JK, O’Neill HC (2005) Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity. J Leukoc Biol 78:319

    Article  PubMed  CAS  Google Scholar 

  44. Tani K, Azuma M, Nakazaki Y, Oyaizu N, Hase H, Ohata J, Takahashi K, OiwaMonna M, Hanazawa K, Wakumoto Y, Kawai K, Noguchi M, Soda Y, Kunisaki R, Watari K, Takahashi S, Machida U, Satoh N, Tojo A, Maekawa T, Eriguchi M, Tomikawa S, Tahara H, Inoue Y, Yoshikawa H, Yamada Y, Iwamoto A, Hamada H, Yamashita N, Okumura K, Kakizoe T, Akaza H, Fujime M, Clift S, Ando D, Mulligan R, Asano S (2004) Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: clinical and immunological findings. Mol Ther 10:799

    Article  PubMed  CAS  Google Scholar 

  45. Witmer-Pack MD, Olivier W, Valinsky J, Schuler G, Steinman RM (1987) Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med 166:1484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shinji Okano and Dr. Yoshikazu Yonemitsu, Kyushu University, for their helpful advices. We also thank Ms. Michiyo Okada for excellent technical assistance. This work was supported by grants from the Ministry of Health, Labor, and Welfare and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzaburo Tani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, H., Iga, M., Xin, M. et al. TARC and RANTES enhance antitumor immunity induced by the GM-CSF-transduced tumor vaccine in a mouse tumor model. Cancer Immunol Immunother 57, 1399–1411 (2008). https://doi.org/10.1007/s00262-008-0476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0476-7

Keywords

Navigation