Skip to main content

Advertisement

Log in

Fas-mediated T cell deletion potentiates tumor antigen-specific tolerance in a mouse model of prostate cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A pivotal obstacle to cancer immunotherapy is peripheral T cell tolerance to tumor-associated antigens (TAAs). Tolerance induction among mature T cells in the periphery operates through a variety of mechanisms, including anergy and apoptosis. Although Fas-FasL-mediated apoptosis is a well-defined tolerance inducing mechanism, direct evidence of its interference with TAA-specific immunity in vivo is still lacking. In this report, we used the TRAMP mouse, which expresses SV40 large T antigen (Tag) preferentially in the prostate and develops prostate tumors, as a model system to address the role of Fas-mediated apoptosis in regulating peripheral T cell tolerance. Using RT-PCR and tetramer staining to quantify TAA-specific TCR-expressing cytolytic T lymphocytes (CTLs), we have shown the presence of TAA-specific CTLs at higher levels in TRAMP mice than in syngeneic C57Bl/6 mice. Tag-specific immunization led to the expansion of Tag-specific CTLs in C57Bl/6 mice, and to their elimination in TRAMP mice. Interestingly, in TRAMP mice with deficient Fas (Hybrid TRAMP-lpr/lpr), Tag-specific CTL elimination in response to Tag immunization did not take place. The results of cytolytic-function assays were consistent with induction and elimination patterns of TAA-specific CTLs and those of RT-PCR and tetramer staining. In conclusion, our data show that Fas-mediated TAA-specific CTL apoptosis contributes to T cell tolerance and suggest that such tolerance could be potentiated following TAA-specific immunization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocyte

TAA:

Tumor-associated antigen

Tag:

SV40 large T antigen

TRAMP:

Transgenic adenocarcinoma of mouse prostate

References

  1. De Visser KE, Schumacher TN, Kruisbeek AM (2003) CD8+ T cell tolerance and cancer immunotherapy. J Immunother 26:1

    Article  PubMed  Google Scholar 

  2. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677

    Article  PubMed  CAS  Google Scholar 

  3. Speiser DE, Miranda R, Zakarian A, Bachmann MF, McKall-Faienza K, Odermatt B, Hanahan D, Zinkernagel RM, Ohashi PS (1997) Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med 186:645

    Article  PubMed  CAS  Google Scholar 

  4. Teague RM, Sather BD, Sacks JA, Huang MZ, Dossett ML, Morimoto J, Tan X, Sutton SE, Cooke MP, Ohlen C, Greenberg PD (2006) Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12:335

    Article  PubMed  CAS  Google Scholar 

  5. Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227

    Article  PubMed  CAS  Google Scholar 

  6. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807

    Article  PubMed  CAS  Google Scholar 

  7. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51

    Article  PubMed  CAS  Google Scholar 

  8. Pardoll D, Allison J (2004) Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 10:887

    Article  PubMed  CAS  Google Scholar 

  9. Ju ST, Panka DJ, Cui H, Ettinger R, el-Khatib M, Sherr DH, Stanger BZ, Marshak-Rothstein A (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444

    Article  PubMed  CAS  Google Scholar 

  10. Ferguson TA, Green DR (2001) Fas-ligand and immune privilege: the eyes have it. Cell Death Differ 8:771

    Article  PubMed  CAS  Google Scholar 

  11. Trimble LA, Prince KA, Pestano GA, Daley J, Cantor H (2002) Fas-dependent elimination of nonselected CD8 cells and lpr disease. J Immunol 168:4960

    PubMed  CAS  Google Scholar 

  12. Vacchio MS, Hodes RJ (2005) Fetal expression of Fas ligand is necessary and sufficient for induction of CD8 T cell tolerance to the fetal antigen H-Y during pregnancy. J Immunol 174:4657

    PubMed  CAS  Google Scholar 

  13. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449

    Article  PubMed  CAS  Google Scholar 

  14. Izui S, Kelley VE, Masuda K, Yoshida H, Roths JB, Murphy ED (1984) Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol 133:227

    PubMed  CAS  Google Scholar 

  15. Radoja S, Saio M, Frey AB (2001) CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol 166:6074

    PubMed  CAS  Google Scholar 

  16. French LE, Tschopp J (2002) Defective death receptor signaling as a cause of tumor immune escape. Semin Cancer Biol 12:51

    Article  PubMed  CAS  Google Scholar 

  17. Lees JR, Charbonneau B, Swanson AK, Jensen R, Zhang J, Matusik R, Ratliff TL (2006) Deletion is neither sufficient nor necessary for the induction of peripheral tolerance in mature CD8+ T cells. Immunology 117:248

    Article  PubMed  CAS  Google Scholar 

  18. Romieu R, Baratin M, Kayibanda M, Lacabanne V, Ziol M, Guillet JG, Viguier M (1998) Passive but not active CD8+ T cell-based immunotherapy interferes with liver tumor progression in a transgenic mouse model. J Immunol 161:5133

    PubMed  CAS  Google Scholar 

  19. Schell TD, Mylin LM, Georgoff I, Teresky AK, Levine AJ, Tevethia SS (1999) Cytotoxic T-lymphocyte epitope immunodominance in the control of choroid plexus tumors in simian virus 40 large T antigen transgenic mice. J Virol 73:5981

    PubMed  CAS  Google Scholar 

  20. Schell TD, Knowles BB, Tevethia SS (2000) Sequential loss of cytotoxic T lymphocyte responses to simian virus 40 large T antigen epitopes in T antigen transgenic mice developing osteosarcomas. Cancer Res 60:3002

    PubMed  CAS  Google Scholar 

  21. Zheng X, Gao JX, Zhang H, Geiger TL, Liu Y, Zheng P (2002) Clonal deletion of simian virus 40 large T antigen-specific T cells in the transgenic adenocarcinoma of mouse prostate mice: an important role for clonal deletion in shaping the repertoire of T cells specific for antigens overexpressed in solid tumors. J Immunol 169:4761

    PubMed  Google Scholar 

  22. Granziero L, Krajewski S, Farness P, Yuan L, Courtney MK, Jackson MR, Peterson PA, Vitiello A (1999) Adoptive immunotherapy prevents prostate cancer in a transgenic animal model. Eur J Immunol 29:1127

    Article  PubMed  CAS  Google Scholar 

  23. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92:3439

    Article  PubMed  CAS  Google Scholar 

  24. Xie YC, Hwang C, Overwijk W, Zeng Z, Eng MH, Mule JJ, Imperiale MJ, Restifo NP, Sanda MG (1999) Induction of tumor antigen-specific immunity in vivo by a novel vaccinia vector encoding safety-modified simian virus 40 T antigen. J Natl Canc Inst 91:169

    Article  CAS  Google Scholar 

  25. Mylin LM, Schell TD, Roberts D, Epler M, Boesteanu A, Collins EJ, Frelinger JA, Joyce S, Tevethia SS (2000) Quantitation of CD8(+) T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 74:6922

    Article  PubMed  CAS  Google Scholar 

  26. Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P (2002) Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 14:354

    Article  PubMed  CAS  Google Scholar 

  27. Budd RC (2001) Activation-induced cell death. Curr Opin Immunol 13:356

    Article  PubMed  CAS  Google Scholar 

  28. Rich RF, Green WR (2002) Characterization of the Fas ligand/Fas-dependent apoptosis of antiretroviral, class I MHC tetramer-defined, CD8+ CTL by in vivo retrovirus-infected cells. J Immunol 168:2751

    PubMed  CAS  Google Scholar 

  29. Rich RF, Green WR (2006) Apoptosis of epitope-specific antiretroviral cytotoxic T lymphocytes via Fas ligand–Fas interactions. Viral Immunol 19:424

    Article  PubMed  CAS  Google Scholar 

  30. Rich RF, Green WR (1999) Antiretroviral cytolytic T-lymphocyte nonresponsiveness: FasL/Fas-mediated inhibition of CD4(+) and CD8(+) antiviral T cells by viral antigen-positive veto cells. J Virol 73:3826

    PubMed  CAS  Google Scholar 

  31. Grossmann ME, Davila T, Celis T (2001) Avoiding tolerance against prostatic antigens with subdominant peptide epitopes. J Immunother 24:237

    Article  CAS  Google Scholar 

  32. Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E (2006) Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 55:672

    Article  PubMed  CAS  Google Scholar 

  33. Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, Hipkiss EL, Flies DB, Kennedy EP, Long M, McGary PW, Coryell L, Nelson WG, Pardoll DM, Adler AJ (2005) Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7:239

    Article  PubMed  CAS  Google Scholar 

  34. Degl’Innocenti E, Grioni M, Boni A, Camporeale A, Bertilaccio MT, Freschi M, Monno A, Arcelloni C, Greenberg NM, Bellone M (2005) Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur J Immunol 35:66

    Article  PubMed  CAS  Google Scholar 

  35. Ohlen C, Kalos M, Hong DJ, Shur AC, Greenberg PD (2001) Expression of a tolerizing tumor antigen in peripheral tissue does not preclude recovery of high-affinity CD8+ T cells or CTL immunotherapy of tumors expressing the antigen. J Immunol 166:2863

    PubMed  CAS  Google Scholar 

  36. Ohlen C, Kalos M, Cheng LE, Shur AC, Hong DJ, Carson BD, Kokot NC, Lerner CG, Sather BD, Huseby ES, Greenberg PD (2002) CD8(+) T cell tolerance to a tumor-associated antigen is maintained at the level of expansion rather than effector function. J Exp Med 195:1407

    Article  PubMed  CAS  Google Scholar 

  37. Kishimoto H, Surh CD, Sprent J (1998) A role for Fas in negative selection of thymocytes in vivo. J Exp Med 187:1427

    Article  PubMed  CAS  Google Scholar 

  38. Caldwell SA, Ryan MH, McDuffie E, Abrams SI (2003) The Fas/Fas ligand pathway is important for optimal tumor regression in a mouse model of CTL adoptive immunotherapy of experimental CMS4 lung metastases. J Immunol 171:2402

    PubMed  CAS  Google Scholar 

  39. Finke J, Ferrone S, Frey A, Mufson A, Ochoa A (1999) Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol Today 20:158

    Article  PubMed  CAS  Google Scholar 

  40. Murtaza A, Nugent CT, Tailor P, Asensio VC, Biggs JA, Campbell IL, Sherman LA (2001) Altered functional and biochemical response by CD8+ T cells that remain after tolerance. Int Immunol 13:1085

    Article  PubMed  CAS  Google Scholar 

  41. Restifo NP (2001) Countering the ‘counterattack’ hypothesis. Nat Med 7:259

    Article  PubMed  CAS  Google Scholar 

  42. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305:200

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants R01 CA82419 and P50 DK065313. We are thankful for the technical assistance of Jenny Loveridge and Marvin Eng that was pivotal for the experiments described herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Sanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng-Rogenski, S.S., Arredouani, M.S., Neeley, Y.C. et al. Fas-mediated T cell deletion potentiates tumor antigen-specific tolerance in a mouse model of prostate cancer. Cancer Immunol Immunother 57, 1357–1365 (2008). https://doi.org/10.1007/s00262-008-0471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0471-z

Keywords

Navigation